Monodromy of Variations of Hodge Structure

被引:0
作者
C. A. M. Peters
J. H. M. Steenbrink
机构
[1] University of Grenoble I,Department of Mathematics
[2] UMR 5582 CNRS-UJF,Department of Mathematics
[3] University of Nijmegen,undefined
[4] Toernooiveld,undefined
来源
Acta Applicandae Mathematica | 2003年 / 75卷
关键词
variation of Hodge structure; monodromy group;
D O I
暂无
中图分类号
学科分类号
摘要
We present a survey of the properties of the monodromy of local systems on quasi-projective varieties which underlie a variation of Hodge structure. In the last section, a less widely known version of a Noether–Lefschetz-type theorem is discussed.
引用
收藏
页码:183 / 194
页数:11
相关论文
共 10 条
[1]  
André Y.(1992)Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part Compositio Math. 82 1-24
[2]  
Cattani E.(1995)On the locus of Hodge classes J. Amer. Math. Soc. 8 483-506
[3]  
Deligne P.(1971)Théorie de Hodge II Publ. Math. IHES 40 5-57
[4]  
Kaplan A.(1972)La conjecture de Weil pour les surfaces K3 Invent. Math. 15 206-226
[5]  
Deligne P.(1980)La conjecture de Weil II Publ. Math. IHES 52 137-252
[6]  
Deligne P(1970)Periods of integrals on algebraic manifolds III Publ. Math. IHES 38 125-180
[7]  
Deligne P.(1933)On the fundamental group of an algebraic curve Amer. J. Math. 55 5-260
[8]  
Griffiths P. A.(1973)Variation of Hodge structure: The singularities of the period mapping Invent. Math. 22 211-319
[9]  
Kampen E. R. v.(undefined)undefined undefined undefined undefined-undefined
[10]  
Schmid W.(undefined)undefined undefined undefined undefined-undefined