Compactness of Hankel Operators with Continuous Symbols

被引:0
作者
Timothy G. Clos
Sönmez Şahutoğlu
机构
[1] University of Toledo,Department of Mathematics and Statistics
来源
Complex Analysis and Operator Theory | 2018年 / 12卷
关键词
Hankel operator; Reinhardt; Compact; Convex; Primary 47B35; Secondary 32W05;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} be a bounded convex Reinhardt domain in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^2$$\end{document} and ϕ∈C(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \in C({\overline{\Omega }})$$\end{document}. We show that the Hankel operator Hϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\phi }$$\end{document} is compact if and only if ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is holomorphic along every non-trivial analytic disc in the boundary of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}.
引用
收藏
页码:365 / 376
页数:11
相关论文
共 10 条
[1]  
Axler S(1986)The Bergman space, the Bloch space, and commutators of multiplication operators Duke Math. J. 53 315-332
[2]  
Čučković Z(2009)Compactness of Hankel operators and analytic discs in the boundary of pseudoconvex domains J. Funct. Anal. 256 3730-3742
[3]  
Şahutoğlu S(2014)Compactness of products of Hankel operators on convex Reinhardt domains in N. Y. J. Math. 20 627-643
[4]  
Čučković Z(1998)Compactness of the J. Funct. Anal. 159 629-641
[5]  
Şahutoğlu S(2010)-Neumann problem on convex domains Integral Equ. Oper. Theory 67 425-438
[6]  
Fu S(1994)Compact Hankel operators on generalized Bergman spaces of the polydisc Integral Equ. Oper. Theory 19 458-476
[7]  
Straube EJ(1994)Hankel operators on the Bergman spaces of strongly pseudoconvex domains Ill. J. Math. 38 223-249
[8]  
Le T(undefined)Hankel operators on weighted Bergman spaces on strongly pseudoconvex domains undefined undefined undefined-undefined
[9]  
Li H(undefined)undefined undefined undefined undefined-undefined
[10]  
Peloso MM(undefined)undefined undefined undefined undefined-undefined