Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations

被引:2
|
作者
Huadong Gao
Dongdong He
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Tongji University,School of Aerospace Engineering and Applied Mechanics
来源
Journal of Scientific Computing | 2017年 / 72卷
关键词
Nernst–Planck–Poisson equations; Finite element methods; Unconditional convergence; Optimal error estimate; Conservative schemes; 65N12; 65N30; 35K61;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to present and study new linearized conservative schemes with finite element approximations for the Nernst–Planck–Poisson equations. For the linearized backward Euler FEM, an optimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} error estimate is provided almost unconditionally (i.e., when the mesh size h and time step τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} are less than a small constant). Global mass conservation and electric energy decay of the schemes are also proved. Extension to second-order time discretizations is given. Numerical results in both two- and three-dimensional spaces are provided to confirm our theoretical analysis and show the optimal convergence, unconditional stability, global mass conservation and electric energy decay properties of the proposed schemes.
引用
收藏
页码:1269 / 1289
页数:20
相关论文
共 50 条