Some Weighted Ostrowski Type Inequalities

被引:0
作者
Liu Z. [1 ]
机构
[1] Institute of Applied Mathematics, School of Science, University of Science and Technology Liaoning, Anshan
关键词
Montgomery identity; Ostrowski inequality; Weighted Montgomery identity; Weighted Ostrowski type inequality;
D O I
10.1007/s10013-013-0038-y
中图分类号
学科分类号
摘要
Some weighted Ostrowski type inequalities are established via the weighted Montgomery identity. A generalized weighted Montgomery identity is also considered, and thus a different proof of an Ostrowski type inequality is presented. © 2013 Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore.
引用
收藏
页码:141 / 151
页数:10
相关论文
共 9 条
[1]  
Aljinovic A.A., Pecaric J., Peric I., Estimates of the difference between two weighted integral means via weighted Montgomery identity, Math. Inequal. Appl., 7, pp. 315-336, (2004)
[2]  
Aljinovic A.A., Pecaric J., Vukelic A., The extension of Montgomery identity via Fink identity with applications, J. Inequal. Appl., 8, pp. 67-80, (2005)
[3]  
Anastassiou G.A., Univariate Ostrowski inequalities, revisited, Monatshefte Math., 135, pp. 175-189, (2002)
[4]  
Barnett N.S., Dragomir S.S., An identity for n-time differentiable functions and applications for Ostrowski type inequalities, RGMIA Res. Rep. Collect., 6, (2003)
[5]  
Cerone P., Dragomir S.S., Mid-point type rules from an inequalities point of view, Applied Mathematics, Handbook of Analytic-Computational Methods, pp. 135-200, (2000)
[6]  
Dragomir S.S., Barnett N.S., An Ostrowski type inequality for mappings whose second derivatives are bounded and applications, J. Indian Math. Soc., 66, pp. 237-245, (1999)
[7]  
Liu Z., A note on an Ostrowski type inequality, Tamsui Oxf. J. Math. Sci., 24, pp. 7-10, (2008)
[8]  
Mitrinovic D.S., Pecaric J.E., Fink A.M., Inequalities Involving for Functions and Their Integrals and Derivatives, (1991)
[9]  
Ostrowski A., Über die Absolutabweichung einer differentierbaren Funktion von ihrem integralmittelwert, Comment. Math. Helv., 10, pp. 226-227, (1938)