The Subgroups of Direct Products of Surface Groups

被引:0
作者
Martin R. Bridson
James Howie
Charles F. Miller
Hamish Short
机构
[1] Mathematical Institute,Department of Mathematics
[2] Heriot-Watt University,Department of Mathematics and Statistics
[3] University of Melbourne,LATP, UMR 6632
[4] Université de Provence,undefined
来源
Geometriae Dedicata | 2002年 / 92卷
关键词
subgroup; direct product; free groups; surface groups; homology of groups;
D O I
暂无
中图分类号
学科分类号
摘要
A subgroup of a product of n surface groups is of type FPn if and only if it contains a subgroup of finite index that is itself a product of (at most n) surface groups.
引用
收藏
页码:95 / 103
页数:8
相关论文
共 14 条
[1]  
Bieri R.(1976)Normal subgroups in duality groups and in groups of cohomological dimension 2 J. Pure Appl. Algebra 7 35-51
[2]  
Bridson M. R.(1999) complexes, towers and subgroups of Math. Proc. Cambridge Philos. Soc. 126 481-497
[3]  
Wise D. T.(1984)Subgroups of direct products of free groups J. London Math. Soc. (2) 30 44-52
[4]  
Baumslag G.(1978)On some groups which cannot be finitely presented J. London Math. Soc. (2) 17 427-436
[5]  
Roseblade J. E.(1949)Subgroups of finite index in free groups Canad. J. Math. 1 187-190
[6]  
Grunewald F.(1999)Subgroups of products of surface groups Math. Proc. Cambridge Philos. Soc. 126 195-208
[7]  
Hall M.(2000)Finitely presented normal subgroups of a product of Fuchsian groups J. Algebra 231 39-52
[8]  
Johnson F. E. A.(1994)The geometric invariants of direct products of virtually free groups Comment. Math. Helv. 69 39-48
[9]  
Johnson F. E. A.(1978)Subgroups of surface groups are almost geometric J. London Math Soc. (2) 17 555-565
[10]  
Meinert H.(2001)Finitely presented subgroups of a product of free groups Oxford Quart. J. 52 127-131