Symmetric error estimates for discontinuous Galerkin time-stepping schemes for optimal control problems constrained to evolutionary Stokes equations

被引:0
作者
Konstantinos Chrysafinos
Efthimios N. Karatzas
机构
[1] National Technical University of Athens,Department of Mathematics
来源
Computational Optimization and Applications | 2015年 / 60卷
关键词
Discontinuous time-stepping schemes; Finite element approximations; Stokes equations; Velocity tracking problem ; Distributed controls; Error estimates; 65M60; 49J20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider fully discrete finite element approximations of a distributed optimal control problem, constrained by the evolutionary Stokes equations. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for the state, adjoint and control variables. The estimates are also applicable when high order schemes are being used. Computational examples validating our expected rates of convergence are also provided.
引用
收藏
页码:719 / 751
页数:32
相关论文
共 51 条
  • [11] Chrysafinos K(2000)Analysis and approximation of the velocity tracking problem for Navier–Stokes flows with distributed control SIAM J. Numer. Anal. 37 1481-1512
  • [12] Walkington NJ(2000)The velocity tracking problem for Navier–Stokes flows with bounded distributed control SIAM J. Control Optim. 37 1913-1945
  • [13] Deckelnick K(2000)The velocity tracking problem for Navier–Stokes flow with boundary control SIAM J. Control Optim. 39 594-634
  • [14] Hinze M(1982)Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second order estimates for spatial discretization SIAM J. Numer. Anal. 19 275-311
  • [15] Deckelnick K(2005)A variational discretization concept in control constrained optimization: the linear-quadratic case Comput. Optim. Appl. 30 45-61
  • [16] Hinze M(2001)Second order methods for optimal control of time-dependent fluid flow SIAM J. Control Optim. 40 925-946
  • [17] de los Reyes J-C(2004)Second order methods for boundary control of the instationary Navier–Stokes system ZAMMZ. Angew. Math. Mech. 84 171-187
  • [18] Kunisch K(2001)Error estimates for semidiscrete finite element approximation of the evolutionary Stokes equations under minimal regularity assumptions J. Sci. Comput. 16 287-317
  • [19] Gunzburger MD(2007)Constrained Dirichlet boundary control in SIAM J. Control Optim. 46 1726-1753
  • [20] Manservisi S(2004) for a class of evolution equations SIAM J. Numer. Anal. 42 1032-1061