Symmetric error estimates for discontinuous Galerkin time-stepping schemes for optimal control problems constrained to evolutionary Stokes equations

被引:0
作者
Konstantinos Chrysafinos
Efthimios N. Karatzas
机构
[1] National Technical University of Athens,Department of Mathematics
来源
Computational Optimization and Applications | 2015年 / 60卷
关键词
Discontinuous time-stepping schemes; Finite element approximations; Stokes equations; Velocity tracking problem ; Distributed controls; Error estimates; 65M60; 49J20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider fully discrete finite element approximations of a distributed optimal control problem, constrained by the evolutionary Stokes equations. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for the state, adjoint and control variables. The estimates are also applicable when high order schemes are being used. Computational examples validating our expected rates of convergence are also provided.
引用
收藏
页码:719 / 751
页数:32
相关论文
共 51 条
  • [1] Abergel F(1990)On some control problems in fluid mechanics Theor. Comput. Fluid Dyn. 1 303-326
  • [2] Temam R(2012)Crank-Nicolson schemes for optimal control problems with evolution equations SIAM J. Numer. Anal. 50 1484-1512
  • [3] Apel T(2012)A discontinuous Galerkin time stepping scheme for the velocity tracking problem SIAM. J. Numer. Anal. 50 2281-2306
  • [4] Flaig T(2007)Discontinuous Galerkin finite element approximations for distributed optimal control problems constrained to parabolic PDE’s Int. J. Numer. Anal. Model. 4 690-712
  • [5] Casas E(2009)Analysis and finite element approximations for distributed optimal control problems for implicit parabolic equations J. Comput. Appl. Math. 231 327-348
  • [6] Chrysafinos K(2012)Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDEs Discret. Contin. Dynam. Syst. B 17 1473-1506
  • [7] Chrysafinos K(2010)Discontinuous Galerkin approximations of the Stokes and Navier–Stokes equations Math. Comput. 79 2135-2167
  • [8] Chrysafinos K(2002)Error estimates in space and time for tracking type control of the instationary Stokes system Int. Ser. Numer. Math. 143 87-103
  • [9] Chrysafinos K(2004)Semidiscretization and error estimates for distributed control of the instationary Navier–Stokes equations Numer. Math. 97 297-320
  • [10] Karatzas E(2005)A semi-smooth Newton method for control constrained boundary control of the Navie–Stokes equtions Nonlinear Anal. 62 1289-1316