Construction of girth-8 (3,L)-QC-LDPC codes of smallest CPM size using column multipliers

被引:0
作者
Jasvinder Singh
Manish Gupta
Jaskarn Singh Bhullar
机构
[1] I.K.G Punjab Technical University,Department of Applied Sciences
[2] Baba Farid College of Engineering and Technology,Department of Applied Sciences
[3] Malout Institute of Management and Information Technology,undefined
来源
Designs, Codes and Cryptography | 2020年 / 88卷
关键词
Quasi-cyclic low-density parity-check codes; Girth; Circulant permutation matrix; Exponent matrix; 94B60; 94B65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new method for the construction of the exponent matrix of quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. The entries of the exponent matrix are based on the column multipliers. To find the column multipliers, a parameter Sα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\varvec{S}_{\varvec{\alpha}}} $$\end{document} is defined which gives the value of column multiplier of the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\varvec{\alpha}} $$\end{document}th column. The proposed method reduced the complexity related to the formation of the exponent matrix and results in (3,L)-QC-LDPC codes with girth at least eight, for L>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\varvec{L} > 3} $$\end{document}. Also, a lower bound on the size of the circulant permutation matrix (CPM) for a QC-LDPC code is derived, and the codes constructed by this method are optimal to the given bound. Further, most of the codes constructed using this method are of smaller CPM size. Specifically, for L>25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\varvec{L} > 25} $$\end{document}, our constructed QC-LDPC codes have the shortest CPM size compared to the existing ones in the literature.
引用
收藏
页码:41 / 49
页数:8
相关论文
共 48 条
[1]  
Amirzade F(2018)Lower bounds on the lifting degree of QC-LDPC codes by difference matrices IEEE Access. 6 23688-23700
[2]  
Sadeghi MR(2004)Quasi-cyclic low-density parity-check codes from circulant permutation matrices IEEE Trans. Inf. Theory 50 1788-1793
[3]  
Fossorier MPC(2016)An explicit method to generate some QC-LDPC codes with girth 8 Iran. J. Sci. Technol. Trans. A Sci. 40 145-149
[4]  
Gholami M(2013)On the girth of quasi-cyclic protograph LDPC codes IEEE Trans. Inf. Theory 59 4542-4552
[5]  
Gholami Z(2017)Practical encoder and decoder for power constrained QC LDPC-lattice codes IEEE Trans. Commun. 65 486-500
[6]  
Karimi M(2013)Bounds on the size of parity-check matrices for quasi-cyclic low-density parity-check codes IEEE Trans. Inf. Theory 59 7288-7298
[7]  
Banihashemi AH(2017)Construction of type-II QC-LDPC codes with fast encoding based on perfect cyclic difference sets Optoelectron. Lett. 13 358-362
[8]  
Khodaiemehr H(2001)A heuristic search for good low-density parity-check codes at short block lengths Proc. IEEE ICC. 1 41-44
[9]  
Sadeghi MR(2004)LDPC codes from triangle-free line sets Des. Codes Cryptogr. 32 341-350
[10]  
Sakzad A(2018)Analytical lower bound on the lifting degree of multiple-edge QC-LDPC codes with girth 6 IEEE Commun. Lett. 22 1528-1531