Picard Groups of Rings of Coinvariants

被引:0
作者
T. Guédénon
机构
来源
Algebras and Representation Theory | 2008年 / 11卷
关键词
Picard groups; Coinvariants; Doi–Hopf modules; 16W30;
D O I
暂无
中图分类号
学科分类号
摘要
Let k be a field, H a Hopf k-algebra with bijective antipode, A a right H-comodule algebra and C a Hopf algebra with bijective antipode which is also a right H-module coalgebra. Under some appropriate assumptions, and assuming that the set of grouplike elements G(A ⊗ C) of the coring A ⊗ C is a group, we show how to calculate, via an exact sequence, the Picard group of the subring of coinvariants in terms of the Picard group of A and various subgroups of G(A ⊗ C).
引用
收藏
页码:25 / 42
页数:17
相关论文
共 15 条
[1]  
Brzeziński T.(2002)The structure of corings. Induction functors, Maschke-type theorem, and Frobenius and Galois properties Algebr. Represent. Theory 5 389-410
[2]  
Caenepeel S.(1998)Making the category of Doi–Hopf modules into a braided monoidal category Algebr. Represent. Theory 1 75-96
[3]  
Van Oystaeyen F.(1997)Crossed modules and Doi–Hopf modules Israel J. Math. 100 221-247
[4]  
Zhou B.(1992)For unifying Hopf modules J. Algebra 153 373-385
[5]  
Caenepeel S.(2004)On the J. Algebra 273 455-488
[6]  
Militaru G.(1980)-finite cohomology J. Pure Appl. Algebra 17 305-311
[7]  
Zhu S.(1976)Picard groups of rings of invariants Proc. Amer. Math. Soc. 60 45-48
[8]  
Doi Y.(1996)Finite generation of class groups of rings of invariants J. Pure Appl. Algebra 107 141-151
[9]  
Guédénon T.(1975)The coinduced functor for infinite dimensional Hopf algebras Trans. Amer. Math. Soc. 213 391-406
[10]  
Magid A.(undefined)The predual Theorem to the Jacobson-Bourbaki theorem undefined undefined undefined-undefined