Some Results for a Class of Kirchhoff-Type Problems with Hardy–Sobolev Critical Exponent

被引:1
作者
Hong-Ying Li
Yang Pu
Jia-Feng Liao
机构
[1] China West Normal University,School of Mathematics and Information
[2] China West Normal University,College of Mathematics Education
来源
Mediterranean Journal of Mathematics | 2019年 / 16卷
关键词
Kirchhoff-type problems; Hardy–Sobolev critical exponent; positive solution; variational method; 35A14; 35B09; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
We study a class of Kirchhoff equations -a+b∫Ω|∇u|2dxΔu=u3|x|+λuq,inΩ,u=0,on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\left( a+b\displaystyle \int _{\Omega }|\nabla u|^2\mathrm{d}x\right) \Delta u=\displaystyle \frac{u^{3}}{|x|}+\lambda u^{q},&{}\hbox {in } \Omega , \\ u=0, &{}\hbox {on } \partial \Omega , \end{array}\right. } \end{aligned}$$\end{document}where Ω⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{3}$$\end{document} is a bounded domain with smooth boundary and 0∈Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in \Omega $$\end{document}, a,b,λ>0,0<q<1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b,\lambda >0,0<q<1.$$\end{document} By the variational method, two positive solutions are obtained. Moreover, when b>1A12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>\frac{1}{A_{1}^{2}}$$\end{document} (A1>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{1}>0$$\end{document} is the best Sobolev–Hardy constant), using the critical point theorem, infinitely many pairs of distinct solutions are obtained for any λ>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0.$$\end{document}
引用
收藏
相关论文
共 79 条
  • [1] Alves CO(2010)On a class of nonlocal elliptic problems with critical growth Differ. Equ. Appl. 2 409-417
  • [2] Corrêa FJSA(2005)Positive solutions for a quasilinear elliptic equation of Kirchhoff type Comput. Math. Appl. 49 85-93
  • [3] Figueiredo GM(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
  • [4] Alves CO(2011)A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problem J. Math. Anal. Appl. 373 248-251
  • [5] Corrêa FJSA(1995)Variational methods for indefinite superlinear homogeneous elliptic problems NoDEA Nonlinear Differ. Equ. Appl. 2 553-572
  • [6] Ma TF(2009)Multiple positive solutions for elliptic equations involving a concave term and critical Sobolev–Hardy exponent Appl. Math. Lett. 22 268-275
  • [7] Ambrosetti A(1993) versus C. R. Acad. Sci. Paris Sér. I Math. 317 465-472
  • [8] Rabinowitz PH(2004) local minimizers J. Differ. Equ. 205 521-537
  • [9] Anello G(2003)Solutions for semilinear elliptic equations with critical exponents and Hardy potential J. Differ. Equ. 193 424-434
  • [10] Berestycki H(2012)A not on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms J. Math. Anal. Appl. 394 488-495