On the diophantine equation ax3+by+c=xyz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ax^{3} + by + c = xyz$$\end{document}

被引:0
作者
S. Subburam
A. Togbé
机构
[1] C.I.T Campus,The Institute of Mathematical Sciences
[2] Purdue University North Central,Mathematics Department
关键词
Diophantine equations; Divisors; Residue classes; Primary 11D25; 11D45;
D O I
10.1007/s13370-016-0423-2
中图分类号
学科分类号
摘要
In this paper, we study the diophantine equation ax3+by+c=xyz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ax^{3} + by + c = xyz$$\end{document} and we produce an upper bound for the number of positive integral solutions (x, y, z) of the equation. Through this, we study a conjecture of A. Togbé concerning the number of positive integral solutions (x, y, z) of the equation when a=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a= 1$$\end{document} and c=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c = 4$$\end{document}.
引用
收藏
页码:9 / 21
页数:12
相关论文
共 9 条
[1]  
Lenstra HW(1984)Divisors in residue classes Math. Comp. 42 331-340
[2]  
Mohanty SP(1977)On the diophantine equation Math. Student 45 13-16
[3]  
Mohanty SP(1996)On the positive solution of the diophantine equation J. Indian Math. Soc. (NS) 62 210-214
[4]  
Ramasamy AMS(2013)On the positive solution of the diophantine equation Ramanujan J 32 203-219
[5]  
Subburam S(2014)On the diophantine equation C. R. Math. Rep. Acad. Sci. Canada 36 15-19
[6]  
Subburam S(2009)On the positive solution of the diophantine equation Afr. Diaspora J. Math. 8 81-89
[7]  
Thangadurai R(1982)Positive solutions of the diophantine equation Internat. J. Math. Math. Sci. 5 311-314
[8]  
Togbé A(undefined)undefined undefined undefined undefined-undefined
[9]  
Utz WR(undefined)undefined undefined undefined undefined-undefined