Optical characterization of colloidal CdSe quantum dots in endothelial progenitor cells

被引:17
作者
Molnár M. [1 ,2 ,3 ]
Fu Y. [1 ]
Friberg P. [2 ,3 ]
Chen Y. [2 ,3 ]
机构
[1] Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology
[2] Department of Molecular and Clinical Medicine/Clinical Physiology, Wallenberg Laboratory, The Sahlgrenska Academy, Gothenburg
[3] University Hospital, University of Gothenburg
关键词
All Open Access; Gold; Green;
D O I
10.1186/1477-3155-8-2
中图分类号
学科分类号
摘要
We have quantitatively analyzed the confocal spectra of colloidal quantum dots (QDs) in rat endothelial progenitor cells (EPCs) by using Leica TCS SP5 Confocal Microscopy System. Comparison of the confocal spectra of QDs located inside and outside EPCs revealed that the interaction between the QDs and EPCs effectively reduces the radius of the exciton confinement inside the QDs so that the excitonic energy increases and the QD fluorescence peak blueshifts. Furthermore, the EPC environment surrounding the QDs shields the QDs so that the excitation of the QDs inside the cells is relatively weak, whereas the QDs outside the cells can be highly excited. At high excitations, the occupation of the ground excitonic state in the QD outside the cells becomes saturated and high-energy states excited, resulting in a large relaxation energy and a broad fluorescence peak. This permits, in concept, to use QD biomarkers to monitor EPCs by characterizing QD fluorescence spectra. © 2010 Molnár et al; licensee BioMed Central Ltd.
引用
收藏
相关论文
共 18 条
[1]  
Medintz I.L., Uyeda H.T., Goldman E.R., Mattoussi H., Quantum dot bioconjugates for imaging, labelling and sensing, Nature Materials, 4, pp. 435-446, (2005)
[2]  
Vashist S.K., Tewari R., Bajpai R.P., Bharadwaj L.M., Raiteri R., Review of Quantum Dot Technologies for Cancer Detection and Treatment., AZojono J Nanotechnology Online, 2, pp. 1-14, (2006)
[3]  
Park J.H., von Maltzahn G., Ruoslahti E., Bhatia S.N., Sailor M.J., Micellar Hybrid Nanoparticles for Simultaneous Magnetofluorescent Imaging and Drug Delivery, Angew Chem Int Ed, 47, pp. 7284-7288, (2008)
[4]  
Yezhelyev M.V., Qi L., O'Regan R.M., Nie S., Gao X., Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging, J Am Chem Soc, 130, pp. 9006-9012, (2008)
[5]  
Derfus A.M., Chen A.A., Min D.H., Ruoslahti E., Bhatia S.N., Targeted Quantum Dot Conjugates for siRNA Delivery, Bioconjugate Chem, 18, pp. 1391-1396, (2007)
[6]  
Hirschi K.K., Ingram D.A., Yoder M.C., Assessing identity, phenotype, and fate of endothelial progenitor cells, Arterioscler Thromb Vasc Biol., 28, 9, pp. 1584-1595, (2008)
[7]  
Fadini G.P., Baesso I., Albiero M., Sartore S., Agostini C., Avogaro A., Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau., Atherosclerosis, 197, pp. 496-503, (2008)
[8]  
Kawamoto A., Losordo D.W., Endothelial progenitor cells for cardiovascular regeneration, Trends Cardiovasc Med, 18, pp. 33-37, (2008)
[9]  
Brunt K.R., Hall S.R.R., Ward C.A., Melo L.G., Endothelial Progenitor Cell and Mesenchymal Stem Cell Isolation, Characterization, Viral Transduction, Methods in Molecular Medicine, Vascular Biology Protocols, 139, pp. 197-210
[10]  
Li J.J., Wang Y.A., Guo W., Keay J.C., Mishima T.D., Johnson M.B., Peng X., Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction., J Am Chem Soc, 125, pp. 12567-12575, (2003)