An Optimal XP Algorithm for Hamiltonian Cycle on Graphs of Bounded Clique-Width

被引:0
|
作者
Benjamin Bergougnoux
Mamadou Moustapha Kanté
O-joung Kwon
机构
[1] University of Bergen,LIMOS, CNRS
[2] Université Clermont Auvergne,Department of Mathematics
[3] Incheon National University,Discrete Mathematics Group
[4] Institute for Basic Science (IBS),undefined
来源
Algorithmica | 2020年 / 82卷
关键词
Hamiltonian cycle; Eulerian trail; Clique-width; XP algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that, given a clique-width k-expression of an n-vertex graph, Hamiltonian Cycle can be solved in time nO(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\mathcal {O}(k)}$$\end{document}. This improves the naive algorithm that runs in time nO(k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\mathcal {O}(k^2)}$$\end{document} by Espelage et al. (Graph-theoretic concepts in computer science, vol 2204. Springer, Berlin, 2001), and it also matches with the lower bound result by Fomin et al. that, unless the Exponential Time Hypothesis fails, there is no algorithm running in time no(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{o(k)}$$\end{document} (Fomin et al. in SIAM J Comput 43:1541–1563, 2014). We present a technique of representative sets using two-edge colored multigraphs on k vertices. The essential idea is that, for a two-edge colored multigraph, the existence of an Eulerian trail that uses edges with different colors alternately can be determined by two information: the number of colored edges incident with each vertex, and the connectedness of the multigraph. With this idea, we avoid the bottleneck of the naive algorithm, which stores all the possible multigraphs on k vertices with at most n edges.
引用
收藏
页码:1654 / 1674
页数:20
相关论文
共 50 条
  • [41] Polynomial-time algorithm for isomorphism of graphs with clique-width at most three
    Das, Bireswar
    Enduri, Murali Krishna
    Reddy, I. Vinod
    THEORETICAL COMPUTER SCIENCE, 2020, 819 (819) : 9 - 23
  • [42] Graph classes with and without powers of bounded clique-width
    Bonomo, Flavia
    Grippo, Luciano N.
    Milanic, Martin
    Safe, Martin D.
    DISCRETE APPLIED MATHEMATICS, 2016, 199 : 3 - 15
  • [43] Induced Minor Free Graphs: Isomorphism and Clique-Width
    Rémy Belmonte
    Yota Otachi
    Pascal Schweitzer
    Algorithmica, 2018, 80 : 29 - 47
  • [44] INDUCTIVE COMPUTATIONS ON GRAPHS DEFINED BY CLIQUE-WIDTH EXPRESSIONS
    Carrere, Frederique
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2009, 43 (03): : 625 - 651
  • [45] On the linear structure and clique-width of bipartite permutation graphs
    Brandstädt, A
    Lozin, VV
    ARS COMBINATORIA, 2003, 67 : 273 - 281
  • [46] Induced Minor Free Graphs: Isomorphism and Clique-Width
    Belmonte, Remy
    Otachi, Yota
    Schweitzer, Pascal
    ALGORITHMICA, 2018, 80 (01) : 29 - 47
  • [47] Computing the Clique-Width on Series-Parallel Graphs
    Antonio Lopez-Medina, Marco
    Leonardo Gonzalez-Ruiz, J.
    Raymundo Marcial-Romero, J.
    Hernandez, J. A.
    COMPUTACION Y SISTEMAS, 2022, 26 (02): : 815 - 822
  • [48] Counting truth assignments of formulas of bounded tree-width or clique-width
    Fischer, E.
    Makowsky, J. A.
    Ravve, Ex
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (04) : 511 - 529
  • [49] Infinitely many minimal classes of graphs of unbounded clique-width
    Collins, A.
    Foniok, J.
    Korpelainen, N.
    Lozin, V.
    Zamaraev, V.
    DISCRETE APPLIED MATHEMATICS, 2018, 248 : 145 - 152
  • [50] On quasi-planar graphs: Clique-width and logical description
    Courcelle, Bruno
    DISCRETE APPLIED MATHEMATICS, 2020, 278 : 118 - 135