An Optimal XP Algorithm for Hamiltonian Cycle on Graphs of Bounded Clique-Width

被引:0
|
作者
Benjamin Bergougnoux
Mamadou Moustapha Kanté
O-joung Kwon
机构
[1] University of Bergen,LIMOS, CNRS
[2] Université Clermont Auvergne,Department of Mathematics
[3] Incheon National University,Discrete Mathematics Group
[4] Institute for Basic Science (IBS),undefined
来源
Algorithmica | 2020年 / 82卷
关键词
Hamiltonian cycle; Eulerian trail; Clique-width; XP algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that, given a clique-width k-expression of an n-vertex graph, Hamiltonian Cycle can be solved in time nO(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\mathcal {O}(k)}$$\end{document}. This improves the naive algorithm that runs in time nO(k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\mathcal {O}(k^2)}$$\end{document} by Espelage et al. (Graph-theoretic concepts in computer science, vol 2204. Springer, Berlin, 2001), and it also matches with the lower bound result by Fomin et al. that, unless the Exponential Time Hypothesis fails, there is no algorithm running in time no(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{o(k)}$$\end{document} (Fomin et al. in SIAM J Comput 43:1541–1563, 2014). We present a technique of representative sets using two-edge colored multigraphs on k vertices. The essential idea is that, for a two-edge colored multigraph, the existence of an Eulerian trail that uses edges with different colors alternately can be determined by two information: the number of colored edges incident with each vertex, and the connectedness of the multigraph. With this idea, we avoid the bottleneck of the naive algorithm, which stores all the possible multigraphs on k vertices with at most n edges.
引用
收藏
页码:1654 / 1674
页数:20
相关论文
共 50 条
  • [31] Compact Representation of Graphs of Small Clique-Width
    Kamali, Shahin
    ALGORITHMICA, 2018, 80 (07) : 2106 - 2131
  • [32] Locating the Eigenvalues for Graphs of Small Clique-Width
    Furer, Martin
    Hoppen, Carlos
    Jacobs, David P.
    Trevisan, Vilmar
    LATIN 2018: THEORETICAL INFORMATICS, 2018, 10807 : 475 - 489
  • [33] Minimal Classes of Graphs of Unbounded Clique-Width
    Vadim V. Lozin
    Annals of Combinatorics, 2011, 15 : 707 - 722
  • [34] Clique-width of partner-limited graphs
    Vanherpe, JM
    DISCRETE MATHEMATICS, 2004, 276 (1-3) : 363 - 374
  • [35] Clique-width of countable graphs: a compactness property
    Courcelle, B
    DISCRETE MATHEMATICS, 2004, 276 (1-3) : 127 - 148
  • [36] Clique-width of full bubble model graphs
    Meister, Daniel
    Rotics, Udi
    DISCRETE APPLIED MATHEMATICS, 2015, 185 : 138 - 167
  • [37] Minimal Classes of Graphs of Unbounded Clique-Width
    Lozin, Vadim V.
    ANNALS OF COMBINATORICS, 2011, 15 (04) : 707 - 722
  • [38] Bounding clique-width via perfect graphs
    Dabrowski, Konrad K.
    Huang, Shenwei
    Paulusma, Daniel
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2019, 104 : 202 - 215
  • [39] Gem- and co-gem-free graphs have bounded clique-width
    Brandstädt, A
    Le, HO
    Mosca, R
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2004, 15 (01) : 163 - 185
  • [40] Graphs of linear clique-width at most 3
    Heggernes, Pinar
    Meister, Daniel
    Papadopoulos, Charis
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (39) : 5466 - 5486