Infinitely many solutions for a double critical Sobolev problem with concave nonlinearities

被引:0
作者
Rachid Echarghaoui
Rachid Sersif
机构
[1] Faculty of Sciences,Department of Mathematics
[2] Ibn Tofail University,undefined
来源
Journal of Elliptic and Parabolic Equations | 2023年 / 9卷
关键词
Infinitely many solutions; Elliptic systems; Radial solution; Critical exponent; Concave; Fountain theorem; 35B33; 35J20; 35J60; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following elliptic systems with critical Sobolev growth and concave nonlinearities. [graphic not available: see fulltext]where B⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\subset {\mathbb {R}}^{N}$$\end{document} is an open ball centered at the origin, η,σ,p,q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta ,\sigma , p, q >0$$\end{document},   1<p+q<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p+q<2$$\end{document},   α,β>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta >1 $$\end{document} and α+β=2∗:=2NN-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha +\beta =2^{*}:= \frac{2N}{N-2}$$\end{document}. We establish that if N>2(p+q+1)p+q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>\frac{2(p+q+1)}{p+q-1}$$\end{document}, the above problem has two distinct and infinite sets of radial solutions. The first set exhibits positive energy, while the second set exhibits negative energy.
引用
收藏
页码:1245 / 1270
页数:25
相关论文
共 48 条
[1]  
Alves CO(2000)On systems of elliptic equations involving subcritical or critical sobolev exponents Nonlinear Anal. 42 771-87
[2]  
de Morais Filho DC(1994)Combined effects of concave and convex nonlinearities in some elliptic problems J. Funct. Anal. 122 519-543
[3]  
Souto MAS(1996)Critical point theory for indefinite functionals with symmetries J. Funct. Anal. 138 107-136
[4]  
Ambrosetti A(1995)On an elliptic equation with concave and convex nonlinearities Proc. Am. Math. Soc. 123 3555-3561
[5]  
Brézis B(1990)Existence of positive solutions of the equation J. Funct. Anal. 88 90-117
[6]  
Cerami G(1983) in Commun. Pure Appl. Math. 36 437-477
[7]  
Bartsch T(2003)Positive solutions of nonlinears of nonlinear elliptic equations involving critical Sobolev exponents Proc. Am. Math. Soc. 131 1857-1866
[8]  
Clapp M(2010)A global compactness result for singular elliptic problems involving critical Sobolev exponent Calc. Var. Partial. Differ. Equ. 38 471-501
[9]  
Bartsch T(2012)Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential J. Funct. Anal. 262 2861-2902
[10]  
Willem M(2011)Infinitely many solutions for J. Differ. Equ. 251 1389-1414