A note on element orders and character codegrees

被引:0
作者
Guohua Qian
机构
[1] Changshu Institute of Technology,Department of Mathematics
来源
Archiv der Mathematik | 2011年 / 97卷
关键词
Primary 20C20; 20C15; Finite solvable group; Element order; Character;
D O I
暂无
中图分类号
学科分类号
摘要
The result of this note is as follows. If a finite solvable group has an element of order m, then the group has an irreducible character whose codegree contains all prime divisors of m.
引用
收藏
页码:99 / 103
页数:4
相关论文
共 41 条
[21]   Properties of element orders in covers for Ln(q) and Un(q) [J].
A. V. Zavarnitsine .
Siberian Mathematical Journal, 2008, 49 :246-256
[22]   A Recursive Formula for the Sum of Element Orders of Finite Abelian Groups [J].
Chew, C. Y. ;
Chin, A. Y. M. ;
Lim, C. S. .
RESULTS IN MATHEMATICS, 2017, 72 (04) :1897-1905
[23]   Properties of element orders in covers for Ln(q) and Un(q) [J].
Zavarnitsine, A. V. .
SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (02) :246-256
[24]   The characterization of almost simple groups PGL(2, p) by their element orders [J].
Moghaddamfar, AR ;
Shi, WJ .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (09) :3327-3338
[25]   Recognition of simple groups U3(Q) by element orders [J].
Zavarnitsin A.V. .
Algebra and Logic, 2006, 45 (2) :106-116
[26]   A characterization of groups PSL(3, q) by their element orders for certain q [J].
Darafsheh M.R. ;
Karamzadeh N.S. .
Journal of Applied Mathematics and Computing, 2002, 9 (2) :409-421
[27]   MAXIMUM SUM ELEMENT ORDERS OF ALL PROPER SUBGROUPS OF PGL(2, q) [J].
Amiri, S. M. Jafarian .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2013, 39 (03) :501-505
[28]   Groups whose nonlinear irreducible characters separate element orders or conjugacy class sizes [J].
Mariagrazia Bianchi ;
David Chillag ;
Emanuele Pacifici .
Archiv der Mathematik, 2008, 90 :1-13
[29]   A characterization of the simple group PSL5(5) by the set of its element orders [J].
M. R. Darafsheh ;
A. Sadrudini .
Siberian Mathematical Journal, 2008, 49
[30]   A characterization of the simple group PSL5(5) by the set of its element orders [J].
Darafsheh, M. R. ;
Sadrudini, A. .
SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (03) :418-422