Conditions for strong ellipticity and M-eigenvalues

被引:0
作者
Liqun Qi
Hui-Hui Dai
Deren Han
机构
[1] The Hong Kong Polytechnic University,Department of Applied Mathematics
[2] The City University of Hong Kong,Department of Mathematics
[3] Nanjing Normal University,School of Mathematics and Computer Sciences
来源
Frontiers of Mathematics in China | 2009年 / 4卷
关键词
Elasticity tensor; strong ellipticity; M-eigenvalue; Z-eigenvalue; 74B99; 15A18; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
The strong ellipticity condition plays an important role in nonlinear elasticity and in materials. In this paper, we define M-eigenvalues for an elasticity tensor. The strong ellipticity condition holds if and only if the smallest M-eigenvalue of the elasticity tensor is positive. If the strong ellipticity condition holds, then the elasticity tensor is rank-one positive definite. The elasticity tensor is rank-one positive definite if and only if the smallest Z-eigenvalue of the elasticity tensor is positive. A Z-eigenvalue of the elasticity tensor is an M-eigenvalue but not vice versa. If the elasticity tensor is second-order positive definite, then the strong ellipticity condition holds. The converse conclusion is not right. Computational methods for finding M-eigenvalues are presented.
引用
收藏
相关论文
共 45 条
[1]  
Cardoso J. F.(1999)High-order contrasts for independent component analysis Neural Computation 11 157-192
[2]  
Chang K. C.(2008)Perron-Frobenius theorem for nonnegative tensors Commu Math Sci 6 507-520
[3]  
Pearson K.(2009)On eigenvalue problems of real symmetric tensors Journal of Mathematical Analysis and Applications 350 416-422
[4]  
Zhang T.(2007)Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI Signal Processing 87 220-236
[5]  
Chang K. C.(2000)On the best rank-1 and rank-( SIAM J Matrix Anal Appl 21 1324-1342
[6]  
Pearson K.(1975), J Elasticity 5 341-361
[7]  
Zhang T.(1977),…, Arch Ration Mech Anal 63 321-336
[8]  
Basser P. J.(2002)) approximation of higher-order tensor SIAM J Matrix Anal Appl 23 863-884
[9]  
Pajevic S.(2001)On the ellipticity of the equations of non-linear elastostatics for a special material SIAM Journal on Optimization 11 796-817
[10]  
De Lathauwer L.(2005)On the failure of ellipticity of the equations for finite elastostatic plane strain Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’ 05) 1 129-132