General Rotational Surfaces in Pseudo-Euclidean 4-Space with Neutral Metric

被引:0
|
作者
Yana Aleksieva
Velichka Milousheva
Nurettin Cenk Turgay
机构
[1] Sofia University,Faculty of Mathematics and Informatics
[2] Bulgarian Academy of Sciences,Institute of Mathematics and Informatics
[3] “L. Karavelov” Civil Engineering Higher School,Department of Mathematics, Faculty of Science and Letters
[4] Istanbul Technical University,undefined
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2018年 / 41卷
关键词
Pseudo-Euclidean space; Lorentz surfaces; General rotational surfaces; Minimal surfaces; Parallel mean curvature vector; Primary 53B30; Secondary 53A35; 53B25;
D O I
暂无
中图分类号
学科分类号
摘要
We define general rotational surfaces of elliptic and hyperbolic type in the pseudo-Euclidean 4-space with neutral metric which are analogous to the general rotational surfaces of C. Moore in the Euclidean 4-space. We study Lorentz general rotational surfaces with plane meridian curves and give the complete classification of minimal general rotational surfaces of elliptic and hyperbolic type, general rotational surfaces with parallel normalized mean curvature vector field, flat general rotational surfaces, and general rotational surfaces with flat normal connection.
引用
收藏
页码:1773 / 1793
页数:20
相关论文
共 50 条
  • [1] General Rotational Surfaces in Pseudo-Euclidean 4-Space with Neutral Metric
    Aleksieva, Yana
    Milousheva, Velichka
    Turgay, Nurettin Cenk
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 1773 - 1793
  • [2] Minimal Lorentz surfaces in pseudo-Euclidean 4-space with neutral metric
    Aleksieva, Yana
    Milousheva, Velichka
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 142 : 240 - 253
  • [3] Meridian Surfaces with Constant Mean Curvature in Pseudo-Euclidean 4-Space with Neutral Metric
    Bulca, Betul
    Milousheva, Velichka
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [4] Meridian Surfaces with Constant Mean Curvature in Pseudo-Euclidean 4-Space with Neutral Metric
    Betül Bulca
    Velichka Milousheva
    Mediterranean Journal of Mathematics, 2017, 14
  • [5] THE RESEARCH ON ROTATIONAL SURFACES IN PSEUDO EUCLIDEAN 4-SPACE WITH INDEX 2
    Almaz, F.
    Kulahci, M. A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2023, 92 (03): : 263 - 279
  • [6] ON THE THEORY OF LORENTZ SURFACES WITH PARALLEL NORMALIZED MEAN CURVATURE VECTOR FIELD IN PSEUDO-EUCLIDEAN 4-SPACE
    Aleksieva, Yana
    Ganchev, Georgi
    Milousheva, Velichka
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (05) : 1077 - 1100
  • [7] Classifications of rotation surfaces in pseudo-Euclidean space
    Kim, YH
    Yoon, DW
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2004, 41 (02) : 379 - 396
  • [8] UNIQUENESS THEOREM FOR SURFACES IN PSEUDO-EUCLIDEAN SPACE
    RUDYAK, YV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1977, (03): : 3 - 6
  • [9] On the Geometric Singularities of Surfaces of Pseudo-Euclidean Space
    Kuzmina, Irina
    Peska, Patrik
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2018, 11 (02): : 104 - 110
  • [10] Quasi-minimal Lorentz surfaces with pointwise 1-type Gauss map in pseudo-Euclidean 4-space
    Milousheva, Velichka
    Turgay, Nurettin Cenk
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 106 : 171 - 183