Influence of Process Parameters on Microstructure and Mechanical Properties in AA2024-T3 Friction Stir Welding

被引:84
作者
Carlone P. [1 ]
Palazzo G.S. [1 ]
机构
[1] Department of Industrial Engineering, University of Salerno, Salerno
关键词
Aluminum; Friction stir welding; Mechanical testing; Optical microscopy; Process model;
D O I
10.1007/s13632-013-0078-4
中图分类号
学科分类号
摘要
Material stirring and heat generation in friction stir welding processes induce significant microstructure and material properties alterations. Previous studies highlighted the relationship among microstructure, grain size, microhardness, and performance of the joint. In this context, an opportune definition of process parameters, in particular rotating and welding speed, is crucial to improve joint reliability. In this article, results provided by a numerical and experimental investigation on the influence of rotating and welding speed on microstructure, mechanical properties, and joint quality in AA2024-T3 friction stir welded butt joints are reported. Experimental data are presented and discussed considering numerically computed temperature and strain rate distributions, providing useful information for parameters setting. Processing window, i.e., parameters resulting in a successful material deposition, is also individuated. © 2013 Springer Science+Business Media New York and ASM International.
引用
收藏
页码:213 / 222
页数:9
相关论文
共 36 条
[1]  
Mishra R.S., Ma Z.Y., Friction stir welding and processing, Mater. Sci. Eng. R, 50, pp. 1-78, (2005)
[2]  
Schmidt H.N.B., Dickerson T.L., Hattel J.H., Material flow in butt friction stir welds in AA2024-T3, Acta Mater., 54, pp. 1199-1209, (2006)
[3]  
Sutton M.A., Yang B., Reynolds A.P., Taylor R., Microstructural studies of friction stir welds in 2024-T3 aluminum, Mater. Sci. Eng. A Struct., 323, pp. 160-166, (2002)
[4]  
Yang B., Yan J., Sutton M.A., Reynolds A.P., Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds Part I. Metallurgical studies, Mater. Sci. Eng. A Struct., 364, pp. 55-65, (2004)
[5]  
Chen H.-B., Yan K., Lin T., Chen S.-B., Jiang C.-Y., Zhao Y., The investigation of typical welding defects for 5456 aluminum alloy friction stir welds, Mater. Sci. Eng. A Struct., 433, pp. 64-69, (2006)
[6]  
Moreira P.M.G.P., de Jesus A.M.P., Ribeiro A.S., de Castro P.M.S.T., Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: a comparison, Theor. Appl. Fract. Mech., 50, pp. 81-91, (2008)
[7]  
Moreira P.M.G.P., de Oliveira F.M.F., de Castro P.M.S.T., Fatigue behaviour of notched specimens of friction stir welded aluminium alloy 6063-T6, J. Mater. Process. Technol., 207, pp. 283-292, (2008)
[8]  
Fratini L., Pasta S., Reynolds A.P., Fatigue crack growth in 2024-T351 friction stir welded joints: longitudinal residual stress and microstructural effects, Int. J. Fatigue, 31, pp. 495-500, (2009)
[9]  
Franchim A.S., Fernandez F.F., Travessa D.N., Microstructural aspects and mechanical properties of friction stir welded AA2024-T3 aluminium alloy sheet, Mater. Des., 32, pp. 4684-4688, (2011)
[10]  
Okada T., Suzuki M., Miyake H., Nakamura T., Machida S., Asakawa M., Evaluation of crack nucleation site and mechanical properties for friction stir welded butt joint in 2024-T3 aluminum alloy, Int. J. Adv. Manuf. Technol., 50, pp. 127-135, (2010)