Common invariant subspaces for collections of operators

被引:0
作者
Roman Drnovšek
机构
[1] University of Ljubljana,Faculty of Mathematics and Physics
来源
Integral Equations and Operator Theory | 2001年 / 39卷
关键词
Primary 47A15; 47D03;
D O I
暂无
中图分类号
学科分类号
摘要
Let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}$$ \end{document} be a collection of bounded operators on a Banach spaceX of dimension at least two. We say that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}$$ \end{document} is finitely quasinilpotent at a vectorx0∈X whenever for any finite subset\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document} of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}$$ \end{document} the joint spectral radius of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document} atx0 is equal 0. If such collection\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}$$ \end{document} contains a non-zero compact operator, then\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}$$ \end{document} and its commutant\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}'$$ \end{document} have a common non-trivial invariant, subspace. If in addition,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}$$ \end{document} is a collection of positive operators on a Banach lattice, then\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}$$ \end{document} has a common non-trivial closed ideal. This result and a recent remarkable theorem of Turovskii imply the following extension of the famous result of de Pagter to semigroups. Let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{S}$$ \end{document} be a multiplicative semigroup of quasinilpotent compact positive operators on a Banach lattice of dimension at least two. Then\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{S}$$ \end{document} has a common non-trivial invariant closed ideal.
引用
收藏
页码:253 / 266
页数:13
相关论文
共 52 条
[1]  
Abramovich Y.A.(1993)Invariant subspaces of operators on l J. Funct. Anal. 115 418-424
[2]  
Aliprantis C.D.(1994)-spaces J. Funct. Anal. 124 95-111
[3]  
Burkinshaw O.(1992)Invariant subspace theorems for positive operators Math. Z. 211 593-607
[4]  
Abramovich Y.A.(1998)On the spectral radius of positive operators Rend. Istit. Mat. Univ. Trieste Suppl. 29 1-76
[5]  
Aliprantis C.D.(1993)The invariant subspace problem: some recent advances Indiana Univ. Math. J. 42 15-25
[6]  
Burkinshaw O.(1998)Triangularizing semigroups of quasinilpotent operators with non-negative entries J. Funct. Anal. 160 452-465
[7]  
Abramovich Y.A.(1997)Invariant subspaces for semigroups of algebraic operators Proc. Amer. Math. Soc. 125 2391-2394
[8]  
Aliprantis C.D.(2000)On reducibility of semigroups of compact quasinilpotent operators Proc. Edinburgh Math. Soc. 43 43-55
[9]  
Burkinshaw O.(1986)Triangularizing semigroups of positive operators on an atomic normed Riesz space Integral Equat. Oper. Th. 9 739-743
[10]  
Abramovich Y.A.(1991)A nil algebra of bounded operators on Hilbert space with semisimple norm closure Houston J. Math. 17 581-602