Machine vision-based cutting process for LCD glass defect detection system

被引:0
|
作者
Chao-Ching Ho
Hao-Ping Wang
Yuan-Cheng Chiao
机构
[1] National Taipei University of Technology,Graduate Institute of Manufacturing Technology, Department of Mechanical Engineering
来源
The International Journal of Advanced Manufacturing Technology | 2022年 / 123卷
关键词
Feature detection; Defect detection; Deep learning; Model acceleration; Reflective photoelasticity method;
D O I
暂无
中图分类号
学科分类号
摘要
In this research, the automatic optical detection system is developed for detecting the sectional profile and the surface of the thin-film transistor liquid crystal display (TFT-LCD) panels after being treated through the cutting process. Traditional image processing inspection relying on pre-determined thresholding cannot achieve ideal results in slight defects in glass substrates. The proposed image pre-processing process was integrated with the deep learning technique to further enhance the detection process of inconspicuous defects in glass substrates. In addition, the photoelastic reflection lighting technique was used to highlight subtle defects in low-contrast surface images of glass substrates. When tested with the sectional profile photodetector, uniformed lighting effect is achieved by combining the concentrated light source of the inner coaxial lens with the line light source in order to test the surface coarseness-related characteristics of the glass sectional profile so as to indicate the defect while intensifying the contrast effect of the sectional profile background. When detecting the sectional profile features, it is conducted by separating the rib mark features through the U-Net network model developed for the deep learning; in result, 100% accuracy can be achieved. When detecting the sectional profile defect, Auto Encoder network model of the deep learning is used to learn the background picture retrieved from the original picture through the linear regression process. As a next step, the model is used again to predict the result by subtracting the background picture from the original picture, and then the defect position is highlighted; as a result, 98% accuracy is achieved. When detecting the model acceleration, it is conducted by revising the model weighting data format. In terms of U-Net Model, the reading time has been shortened for 4.28 s; in individual picture, the prediction time has been shortened for 0.29 s; in Auto Encoder, the model reading time has been shortened for 19.23 s; and the individual picture prediction time has been shortened for 0.94 s. As for the surface detection, the circular polariscope is developed. During the detection, the photoelastic reflection theory is employed by projecting the circularly polarized light vertically onto the panel surface in order to produce the interfering halo at the deformed area surrounding the denting defect, and the resulting features are referenced to identify the denting defect. By screening the mean luminance value of the sliding window and the discrete value, 90% detection accuracy can be achieved. In the meantime, it can also be used to pinpoint the denting defect that is over 3° in average angle change as seen on the normal line surrounding the defect.
引用
收藏
页码:1477 / 1498
页数:21
相关论文
共 50 条
  • [1] Machine vision-based cutting process for LCD glass defect detection system
    Ho, Chao-Ching
    Wang, Hao-Ping
    Chiao, Yuan-Cheng
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 123 (5-6) : 1477 - 1498
  • [2] Machine Vision-based Defect Detection Using Deep Learning Algorithm
    Kim, Dae-Hyun
    Boo, Seung Bin
    Hong, Hyeon Cheol
    Yeo, Won Gu
    Lee, Nam Yong
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2020, 40 (01) : 47 - 52
  • [3] A defect detection system of glass tube yarn based on machine vision
    Bao, Junmin
    Jing, Junfeng
    Xie, Yaohua
    JOURNAL OF INDUSTRIAL TEXTILES, 2023, 53
  • [4] A machine vision-based defect detection system for nuclear-fuel rod groove
    Suo, Xinyu
    Liu, Jian
    Dong, Licheng
    Shengfeng, Chen
    Enhui, Lu
    Ning, Chen
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (06) : 1649 - 1663
  • [5] A vision-based fusion method for defect detection of milling cutter spiral cutting edge
    Zhang, Tongjia
    Zhang, Chengrui
    Wang, Yanjie
    Zou, Xiaofu
    Hu, Tianliang
    MEASUREMENT, 2021, 177
  • [6] A Computer Vision-Based Automatic System for Egg Grading and Defect Detection
    Yang, Xiao
    Bist, Ramesh Bahadur
    Subedi, Sachin
    Chai, Lilong
    ANIMALS, 2023, 13 (14):
  • [7] A machine vision-based defect detection system for nuclear-fuel rod groove
    Xinyu Suo
    Jian Liu
    Licheng Dong
    Chen Shengfeng
    Lu Enhui
    Chen Ning
    Journal of Intelligent Manufacturing, 2022, 33 : 1649 - 1663
  • [8] Application of machine vision-based NDT technology in ceramic surface defect detection - a review
    Dong, Guanping
    Sun, Shanwei
    Wang, Zixi
    Wu, Nanshou
    Huang, Pingnan
    Feng, Hao
    Pan, Minqiang
    MATERIALS TESTING, 2022, 64 (02) : 202 - 219
  • [9] Research and Development of a Machine Vision-Based System for Surface Defect Detection on Titanium Alloy Bars
    Pei, Cunhao
    Pu, Hucheng
    Li, Chunlei
    Li, Liang
    2024 IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, CIS AND IEEE INTERNATIONAL CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS, RAM, CIS-RAM 2024, 2024, : 261 - 266
  • [10] A Chip Defect Detection System Based on Machine Vision
    Qiao, Xindan
    Chen, Ting
    Zhuang, Wanjing
    Wu, Jinyi
    PROCEEDINGS OF INCOME-VI AND TEPEN 2021: PERFORMANCE ENGINEERING AND MAINTENANCE ENGINEERING, 2023, 117 : 555 - 568