Comparative study of Gaussian basis sets for calculation of core electron binding energies in first-row hydrides and glycine

被引:3
作者
Iogann Tolbatov
Daniel M. Chipman
机构
[1] Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, 46556, IN
[2] Department of Physics, University of Notre Dame, Notre Dame, 46556, IN
关键词
Basis set; Core electron binding energies; Density functional theory; Glycine; Quantum chemistry; X-ray photoelectron spectroscopy;
D O I
10.1007/s00214-014-1560-z
中图分类号
学科分类号
摘要
A number of Gaussian basis sets has been studied for performance in density functional calculations of core electron binding energies and chemical shifts of the carbon, nitrogen, and oxygen nuclei in the first-row hydrides methane, ammonia, and water, and in glycine. The ultimate goal is to identify methods sufficiently accurate and efficient to aid analysis of experimental X-ray photoelectron spectra for amino acids, large polypeptides, and DNA nucleosides in various environments. Several combinations of density functionals and basis sets have been identified as promising for such calculations with average accuracy of 0.20 eV or better. © Springer-Verlag Berlin Heidelberg 2014.
引用
收藏
相关论文
共 108 条
[1]  
Tougaard S., Quantitative XPS: Non-destructive analysis of surface nano-structures, Appl Surf Sci, 100, pp. 1-10, (1996)
[2]  
Rosenthal D., Ruta M., Schlogl R., Kiwi-Minsker L., Combined XPS and TPD study of oxygen-functionalized carbon nanofibers grown on sintered metal fibers, Carbon, 48, pp. 1835-1843, (2010)
[3]  
Baer D.R., Engelhard M.H., XPS analysis of nanostructured materials and biological surfaces, J Electron Spectrosc Relat Phenom, 178-179, pp. 415-432, (2010)
[4]  
O'Shea J.N., Schnadt J., Andersson S., Patthey L., Rost S., Giertz A., Brena B., Forsell J.O., Sandell A., Bjorneholm O., Et al., X-ray photoelectron spectroscopy of low surface concentration mass-selected Ag clusters, J Chem Phys, 113, pp. 9233-9238, (2000)
[5]  
Peredkov S., Sorensen S.L., Rosso A., Ohrwall G., Lundwall M., Rander T., Lindblad A., Bergersen H., Pokapanich W., Svensson S., Et al., Size determination of free metal clusters by corelevel photoemission from different initial charge states, Phys Rev B, 76, 81402, pp. 1-4, (2007)
[6]  
Peters S., Peredkov S., Neeb M., Eberhardt W., Al-Hada M., Size-dependent XPS spectra of small supported Au-clusters, Surf Sci, 608, pp. 129-134, (2013)
[7]  
Dohan Ehrenfest D.M., Coelho P.G., Kang B., Sul Y., Albrektsson T., Classification of osseointegrated implant surfaces: Materials, chemistry and topography, Trends Biotechnol, 28, pp. 198-206, (2010)
[8]  
Tolbatov I., Chipman D.M., Performance of density functionals for computation of core electron binding energies in first-row hydrides and glycine, Theor Chem Acc, 133, pp. 1-7, (2014)
[9]  
Wagner I., Musso H., New naturally–occurring amino– acids, Angew Chem Int Ed, 22, pp. 816-828, (1983)
[10]  
Zhang Y., Li X., Peng L., Wang G., Ke K., Jiang Z., Novel glycine–dependent inactivation of NMDA receptors in cultured hippocampal neurons, Neurosci Bull, 28, pp. 550-560, (2012)