APT Attack Detection Based on Graph Convolutional Neural Networks

被引:0
|
作者
Weiwu Ren
Xintong Song
Yu Hong
Ying Lei
Jinyu Yao
Yazhou Du
Wenjuan Li
机构
[1] Changchun University of Science and Technology,School of Computer Science and Technology
[2] National Computer Network Emergency Response Center,Jilin Branch
来源
International Journal of Computational Intelligence Systems | / 16卷
关键词
APT attack detection; Graph convolutional neural networks; Knowledge graph; Vulnerability exploits;
D O I
暂无
中图分类号
学科分类号
摘要
Advanced persistent threat (APT) attacks are malicious and targeted forms of cyberattacks that pose significant challenges to the information security of governments and enterprises. Traditional detection methods struggle to extract long-term relationships within these attacks effectively. This paper proposes an APT attack detection model based on graph convolutional neural networks (GCNs) to address this issue. The aim is to detect known attacks based on vulnerabilities and attack contexts. We extract organization-vulnerability relationships from publicly available APT threat intelligence, along with the names and relationships of software security entities from CVE, CWE, and CAPEC, to generate triple data and construct a knowledge graph of APT attack behaviors. This knowledge graph is transformed into a homogeneous graph, and GCNs are employed to process graph features, enabling effective APT attack detection. We evaluate the proposed method on the dataset constructed in this paper. The results show that the detection accuracy of the GCN method reaches 95.9%, improving by approximately 2.1% compared to the GraphSage method. This approach proves to be effective in real-world APT attack detection scenarios.
引用
收藏
相关论文
共 50 条
  • [1] APT Attack Detection Based on Graph Convolutional Neural Networks
    Ren, Weiwu
    Song, Xintong
    Hong, Yu
    Lei, Ying
    Yao, Jinyu
    Du, Yazhou
    Li, Wenjuan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [2] Fault Detection and Isolation in Industrial Networks using Graph Convolutional Neural Networks
    Khorasgani, Hamed
    Hasanzadeh, Arman
    Farahat, Ahmed
    Gupta, Chetan
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [3] Augmenting Graph Convolutional Neural Networks with Highpass Filters
    Ansarizadeh, Fatemeh
    Tay, David B.
    Thiruvady, Dhananjay
    Robles-Kelly, Antonio
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2020, 2021, 12644 : 77 - 86
  • [4] An Android Malware Detection Method Using Frequent Graph Convolutional Neural Networks
    Zhao, Yulong
    Sun, Shi
    Huang, Xiaofeng
    Zhang, Jixin
    ELECTRONICS, 2025, 14 (06):
  • [5] LGRec:A group recommendation method based on graph convolutional neural networks
    Jiang, Pingsheng
    Lin, Bing
    Zhang, Xun
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1343 - 1349
  • [6] MSGVUL: Multi-semantic integration vulnerability detection based on relational graph convolutional neural networks
    Xiao, Wei
    Hou, Zhengzhang
    Wang, Tao
    Zhou, Chengxian
    Pan, Chao
    INFORMATION AND SOFTWARE TECHNOLOGY, 2024, 170
  • [7] Adaptive filters in Graph Convolutional Neural Networks
    Apicella, Andrea
    Isgro, Francesco
    Pollastro, Andrea
    Prevete, Roberto
    PATTERN RECOGNITION, 2023, 144
  • [8] Stability and Generalization of Graph Convolutional Neural Networks
    Verma, Saurabh
    Zhang, Zhi-Li
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1539 - 1548
  • [9] A Rumor Detection Model Based on Graph Convolutional Networks and Multimodal Features
    Li, Qian
    Yu, Laihang
    Pan, Li
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH, 2024, 17 (01)
  • [10] Dynamic community detection based on graph convolutional networks and contrastive learning
    Li, Xianghua
    Zhen, Xiyuan
    Qi, Xin
    Han, Huichun
    Zhang, Long
    Han, Zhen
    CHAOS SOLITONS & FRACTALS, 2023, 176