New conditions of stability and convergence of Stokes and Newton iterations for Navier-Stokes equations

被引:0
作者
Guodong Zhang
Xiaojing Dong
Yongzheng An
Hong Liu
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
来源
Applied Mathematics and Mechanics | 2015年 / 36卷
关键词
Navier-Stokes equation; Stokes iteration; Newton iteration; stability; convergence; O242.21; O241.82; O351.3; 65N30; 76D05; 76M10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers Stokes and Newton iterations to solve stationary Navier- Stokes equations based on the finite element discretization. We obtain new sufficient conditions of stability and convergence for the two iterations. Specifically, when 0 < σ = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tfrac{{N||f||_{ - 1} }} {{\nu ^2 }}$\end{document}≤\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{1}{{\sqrt 2 + 1}}$$\end{document}, the Stokes iteration is stable and convergent, where N is defined in the paper. When 0 < σ ≤ 5/11, the Newton iteration is stable and convergent. This work gives a more accurate admissible range of data for stability and convergence of the two schemes, which improves the previous results. A numerical test is given to verify the theory.
引用
收藏
页码:863 / 872
页数:9
相关论文
共 46 条
  • [1] Ma F. Y.(2007)Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations Appl. Math. Mech.-Engl. Ed 28 27-35
  • [2] Ma Y. C.(2012)Two-level stabilized finite element method for Stokes eigenvalue problem Appl. Math. Mech.-Engl. Ed 33 621-630
  • [3] Wo W. F.(2013)Unified analysis for stabilized methods of low-order mixed finite elements for stationary Navier-Stokes equations Appl. Math. Mech.-Engl. Ed 34 953-970
  • [4] Huang P. Z.(2013)Euler implicit/explicit iterative scheme for the stationary Navier-Stokes equations Numer. Math 123 67-96
  • [5] He Y. N.(2005)Two-level stabilized finite element methods for the steady Navier-Stokes equations Computing 74 337-351
  • [6] Feng X. L.(2009)Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations Comput. Methods Appl. Mech. Engrg 198 1351-1359
  • [7] Chen G.(2012)Numerical comparisons of time-space iterative method and spatial iterative methods for the stationary Navier-Stokes equations J. Comput. Phys 231 6790-6800
  • [8] Feng M. F.(2003)An optimal nonlinear Galerkin method with mixed finite elements for the steady Navier-Stokes equations Numer. Methods PDEs 19 762-775
  • [9] He Y. N.(1993)A two-level discretization method for the Navier-Stokes equations Comput. Math. Appl 26 33-38
  • [10] He Y. N.(1998)Numerical solution of the stationary Navier-Stokes equations using a multilevel finite element method SIAM J. Sci. Comput 20 1-12