The Geometry of Locally Symmetric Affine Surfaces

被引:0
作者
D. D’Ascanio
P. Gilkey
P. Pisani
机构
[1] Universidad Nacional de La Plata,Instituto de Física La Plata, CONICET and Departamento de Física, Facultad de Ciencias Exactas
[2] University of Oregon,Mathematics Department
来源
Vietnam Journal of Mathematics | 2019年 / 47卷
关键词
Ricci tensor; Symmetric affine surface; Geodesic completeness; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
We examine the local geometry of affine surfaces which are locally symmetric. There are six non-isomorphic local geometries. We realize these examples as type A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}$\end{document}, type ℬ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {B}$\end{document}, and type C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}$\end{document} geometries using a result of Opozda and classify the relevant geometries up to linear isomorphism. We examine the geodesic structures in this context. Particular attention is paid to the Lorentzian analogue of the hyperbolic plane and to the pseudosphere.
引用
收藏
页码:5 / 21
页数:16
相关论文
共 11 条
[1]  
Brozos-Vázquez M(2018)Homogeneous affine surfaces: affine killing vector fields and gradient Ricci solitons J. Math. Soc. Japan 70 25-70
[2]  
García-Río E(2017)Geodesic completeness for type $\mathcal {A}$A surfaces Differential Geom. Appl. 54A 31-43
[3]  
Gilkey P(1965)On affine symmetric spaces Trans. Am. Math. Soc. 119 291-309
[4]  
D’Ascanio D(1954)Invariant affine connections on homogeneous spaces Am. J. Math. 76 33-65
[5]  
Gilkey P(1997)Affine versions of Singer’s theorem on locally homogeneous spaces Ann. Glob. Anal. Geom. 15 187-199
[6]  
Pisani P(2004)A classification of locally homogeneous connections on 2-dimensional manifolds Differential Geom. Appl. 21 173-198
[7]  
Koh S(2016)On two theorems about local automorphisms of geometric structures Ann. Inst. Fourier Grenoble 66 175-208
[8]  
Nomizu K(undefined)undefined undefined undefined undefined-undefined
[9]  
Opozda B(undefined)undefined undefined undefined undefined-undefined
[10]  
Opozda B(undefined)undefined undefined undefined undefined-undefined