On the chromatic number of ℝ9

被引:5
作者
Kupavskii A.B. [1 ]
Raigorodskii A.M. [1 ]
机构
[1] Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
Scalar Product; Chromatic Number; Independent System; Distance Graph; Geometrical Graph;
D O I
10.1007/s10958-009-9708-4
中图分类号
学科分类号
摘要
In this work, the previous lower bound is considerably strengthened for the chromatic number of the nine-dimensional space. © 2009 Springer Science+Business Media, Inc.
引用
收藏
页码:720 / 731
页数:11
相关论文
共 16 条
[1]  
Brass P., Moser W., Pach J., Research Problems in Discrete Geometry, (2005)
[2]  
Cantwell K., Finite Euclidean Ramsey theory, J. Combin. Theory, Ser. A, 73, 2, pp. 273-285, (1996)
[3]  
Cibulka J., On the chromatic number of real and rational spaces, Geombinatorics, 18, 2, pp. 53-66, (2008)
[4]  
Guterman A.E., Lyubimov V.K., Raigorodskii A.M., Usachev S.A., On the independence numbers of some distance graphs with vertices in {-1, 0, 1}n: Estimates, conjectures, and applications to the Nelson-Erdo{double acute}s-Hadwiger and Borsuk problems, Mat. Zametki, (2009)
[5]  
Ivanov L.L., An estimate for the chromatic number of the space ℝ4, Usp. Mat. Nauk, 61, 5, pp. 371-372, (2006)
[6]  
Kuzyurin N.N., Asymptotic investigation of the set covering problem, Probl. Kibern., 37, pp. 19-56, (1980)
[7]  
Larman D.G., Rogers C.A., The realization of distances within sets in Euclidean space, Mathematika, 19, pp. 1-24, (1972)
[8]  
Moser L., Moser W., Solution to problem 10, Can. Math. Bull., 4, pp. 187-189, (1961)
[9]  
Nechushtan O., On the space chromatic number, Discrete Math., 256, pp. 499-507, (2002)
[10]  
Raigorodskii A.M., Systems of common representatives, Fundam. Prikl. Mat., 5, 3, pp. 851-860, (1999)