Periodic solutions of a class of nonautonomous second-order Hamiltonian systems with nonsmooth potentials

被引:0
作者
Yan Ning
Tianqing An
机构
[1] Hohai University,College of Science
来源
Boundary Value Problems | / 2015卷
关键词
periodic solutions; second-order Hamiltonian systems; saddle point theorem; discontinuous nonlinearities; locally Lipschitz continuous;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with nonautonomous second-order Hamiltonian systems with nondifferentiable potentials. By using the nonsmooth critical point theory for locally Lipschitz functionals, we obtain some new existence results for the periodic solutions.
引用
收藏
相关论文
共 16 条
[1]  
Papageorgiou EH(2004)Nonlinear second order periodic systems with nonsmooth potential Czechoslov. Math. J. 15 347-371
[2]  
Papageorgiou NS(2010)Multiple solutions for nonautonomous second order periodic systems Acta Math. Sci. Ser. B Engl. Ed. 30 350-358
[3]  
Denkowski Z(2007)Nonautonomous second order periodic systems: existence and multiplicity of solutions J. Nonlinear Convex Anal. 8 373-390
[4]  
Gasinski L(2002)Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems J. Math. Anal. Appl. 275 870-882
[5]  
Papageorgiou NS(1981)Variational methods for non-differentiable functionals and their applications to partial differential equations J. Math. Anal. Appl. 80 102-129
[6]  
Barletta G(1986)Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 77-109
[7]  
Papageorgiou NS(2008)Existence and multiplicity results for nonlinear nonautonomous second-order systems Nonlinear Anal. 68 1611-1626
[8]  
Tang CL(2003)Some remarks on critical point theory for locally Lipschitz functions Glasg. Math. J. 45 131-141
[9]  
Wu XP(2001)Periodic solutions for second order Hamiltonian systems with not uniformly coercive potential J. Math. Anal. Appl. 259 386-397
[10]  
Chang KC(undefined)undefined undefined undefined undefined-undefined