Strong Convergence of Two Proximal Point Algorithms with Possible Unbounded Error Sequences

被引:0
作者
Behzad Djafari Rouhani
Sirous Moradi
机构
[1] University of Texas at El Paso,Department of Mathematical Sciences
[2] Arak University,Department of Mathematics, Faculty of Science
来源
Journal of Optimization Theory and Applications | 2017年 / 172卷
关键词
Maximal monotone operator; Proximal point algorithm; Resolvent operator; Metric projection; Hilbert space; 47J25; 47H05; 47H09; 90C29; 90C90;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a proximal point algorithm with errors for a maximal monotone operator in a real Hilbert space, previously studied by Boikanyo and Morosanu, where they assumed that the zero set of the operator is nonempty and the error sequence is bounded. In this paper, by using our own approach, we significantly improve the previous results by giving a necessary and sufficient condition for the zero set of the operator to be nonempty, and by showing that in this case, this iterative sequence converges strongly to the metric projection of some point onto the zero set of the operator, without assuming the boundedness of the error sequence. We study also in a similar way the strong convergence of a new proximal point algorithm and present some applications of our results to optimization and variational inequalities.
引用
收藏
页码:222 / 235
页数:13
相关论文
共 19 条
[1]  
Rockafellar RT(1970)On the maximal monotonicity of subdifferential mappings Pac. J. Math. 33 209-216
[2]  
Martinet B(1970)Régularisation d’inéquations variationnelles par approximations successives Rev. Française Informat. Recherche Opérationnelle 4 154-158
[3]  
Rockafellar RT(1976)Monotone operators and the proximal point algorithm SIAM J. Control Optim. 14 877-898
[4]  
Boikanyo OA(2009)Modified Rockafellar’s algorithm Math. Sci. Res. J. 13 101-122
[5]  
Morosanu G(2008)On the proximal point algorithm J. Optim. Theory Appl. 137 411-417
[6]  
Djafari Rouhani B(1991)On the convergence of the proximal point algorithm for convex minimization SIAM J. Control Optim. 29 403-419
[7]  
Khatibzadeh H(1996)Combining the proximal algorithm and Tikhonov regularization Optimization 37 239-252
[8]  
Güler O(2006)A regularization method for the proximal point algorithm J. Global Optim. 36 115-125
[9]  
Lehdili N(1975)Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert C.R. Acad. Sci. Paris Sér. A–B 280 A1511-A1514
[10]  
Moudafi A(2010)Fifty years of maximal monotonicity Optim. Lett. 4 473-490