Laser wakefield and direct laser acceleration of electron in plasma bubble regime with circularly polarized laser pulse

被引:0
|
作者
Amrit Kumar
Niti Kant
Harjit Singh Ghotra
机构
[1] Lovely Professional University,Department of Physics
[2] Advanced Study Hub (ASH) – Theoretical and Computational Research Form (TCRF),undefined
来源
关键词
Circularly polarized laser pulse; Laser wakefield acceleration; Direct laser acceleration; Bubble regime; Dephasing length;
D O I
暂无
中图分类号
学科分类号
摘要
With a circularly polarized (CP) Gaussian laser pulse, we examine theoretically the acceleration of electrons due to a combined effect of laser wakefield (LW) and direct laser (DL) in the plasma bubble regime. The CP laser pulse is ideal for DLA, since it allows for better electron trapping in the plasma bubble regime than a linearly polarized (LP) laser pulse. As a result of a CP laser pulse propagation in z direction, the electrons are accelerated in longitudinal direction by the accelerating field (Wz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{W}}_{{\text{z}}}$$\end{document}) and focused in the transverse direction by the focusing fields (Wx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{W}}_{{\text{x}}}$$\end{document}, Wy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{W}}_{{\text{y}}}$$\end{document}). The density of plasma medium is about ∼1.8×1018cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 1.8 \times 10^{18} {\text{cm}}^{ - 3}$$\end{document} which is from a 99.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.9\%$$\end{document} He / 0.1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1\%$$\end{document} N2 neutral mix, laser pulse duration is 30fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30{\text{f}}s$$\end{document} and wavelength 0.8μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.8 \mu m$$\end{document}. A bubble radius of over 20μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20{\mu m}$$\end{document} is achieved with a CP laser pulse at an intensity on the order of a0=7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{a}}_{0} = 7$$\end{document} (∼2.14×1020W/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 2.14 \times 10^{20} W/{\text{cm}}^{2}$$\end{document}), although the same can be achieved with an LP laser at a significantly higher intensity. The electron energy gain with a CP laser pulse appears to be above 3GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3{\text{GeV}}$$\end{document} at this intensity. CP laser pulse appeared with a lower transverse emittance and a higher energy gain than an LP laser pulse of the same intensity. In comparison to LP laser pulse, CP laser pulse appears to have a more effective acceleration mechanism for LWFA with DLA in the plasma-bubble regime.
引用
收藏
相关论文
共 50 条
  • [41] Direct Acceleration of Electrons by Radially Polarized Laser Pulse
    Bochkarev, S. G.
    Popov, K. I.
    Bychenkov, V. Yu.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2009, 36 (11) : 335 - 336
  • [42] Direct acceleration of electrons by radially polarized laser pulse
    S. G. Bochkarev
    K. I. Popov
    V. Yu. Bychenkov
    Bulletin of the Lebedev Physics Institute, 2009, 36 : 335 - 336
  • [43] Generation and analysis of quasimonoenergetic electron beams by laser-plasma interaction in transitional region from the self-modulated laser wakefield to bubble acceleration regime
    Masuda, S.
    Miura, E.
    PHYSICS OF PLASMAS, 2009, 16 (09)
  • [44] Accurate simulation of direct laser acceleration in a laser wakefield accelerator
    Miller, Kyle G.
    Palastro, John P.
    Shaw, Jessica L.
    Li, Fei
    Tsung, Frank S.
    Decyk, Viktor K.
    Joshi, C. B.
    Mori, Warren
    PHYSICS OF PLASMAS, 2023, 30 (07)
  • [45] Cascade acceleration of electrons by laser wakefield and direct laser field
    Adachi, Masahiro
    Miura, Eisuke
    Kato, Susumu
    Koyama, Kazuyoshi
    Masuda, Shin-Ichi
    Watanabe, Takayuki
    Okamoto, Hiromi
    Ogata, Atsushi
    Tanimoto, Mitsumori
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2006, 45 (5 A): : 4214 - 4218
  • [46] Cascade acceleration of electrons by laser wakefield and direct laser field
    Adachi, Masahiro
    Miura, Eisuke
    Kato, Susumu
    Koyama, Kazuyoshi
    Masuda, Shin-ichi
    Watanabe, Takayuki
    Okamoto, Hiromi
    Ogata, Atsushi
    Tanimoto, Mitsumori
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (5A): : 4214 - 4218
  • [47] On laser wakefield acceleration in plasma channels
    Andreev, NE
    Chizhonkov, EV
    Frolov, AA
    Gorbunov, LM
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1998, 410 (03): : 469 - 476
  • [48] Laser Wakefield Acceleration in a Plasma Channel
    M. S. Dorozhkina
    K. V. Baluev
    D. D. Kutergin
    I. K. Lotov
    V. A. Minakov
    R. I. Spitsyn
    P. V. Tuev
    K. V. Lotov
    Bulletin of the Lebedev Physics Institute, 2023, 50 : S715 - S723
  • [49] Laser wakefield acceleration in magnetized plasma
    Jha, Pallavi
    Saroch, Akanksha
    Mishra, Rohit Kumar
    Upadhyay, Ajay Kumar
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2012, 15 (08):
  • [50] Laser Wakefield Acceleration in a Plasma Channel
    Dorozhkina, M. S.
    Baluev, K. V.
    Kutergin, D. D.
    Lotov, I. K.
    Minakov, V. A.
    Spitsyn, R. I.
    Tuev, P. V.
    Lotov, K. V.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2023, 50 (SUPPL 6) : S715 - S723