Laser wakefield and direct laser acceleration of electron in plasma bubble regime with circularly polarized laser pulse

被引:0
|
作者
Amrit Kumar
Niti Kant
Harjit Singh Ghotra
机构
[1] Lovely Professional University,Department of Physics
[2] Advanced Study Hub (ASH) – Theoretical and Computational Research Form (TCRF),undefined
来源
关键词
Circularly polarized laser pulse; Laser wakefield acceleration; Direct laser acceleration; Bubble regime; Dephasing length;
D O I
暂无
中图分类号
学科分类号
摘要
With a circularly polarized (CP) Gaussian laser pulse, we examine theoretically the acceleration of electrons due to a combined effect of laser wakefield (LW) and direct laser (DL) in the plasma bubble regime. The CP laser pulse is ideal for DLA, since it allows for better electron trapping in the plasma bubble regime than a linearly polarized (LP) laser pulse. As a result of a CP laser pulse propagation in z direction, the electrons are accelerated in longitudinal direction by the accelerating field (Wz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{W}}_{{\text{z}}}$$\end{document}) and focused in the transverse direction by the focusing fields (Wx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{W}}_{{\text{x}}}$$\end{document}, Wy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{W}}_{{\text{y}}}$$\end{document}). The density of plasma medium is about ∼1.8×1018cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 1.8 \times 10^{18} {\text{cm}}^{ - 3}$$\end{document} which is from a 99.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.9\%$$\end{document} He / 0.1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1\%$$\end{document} N2 neutral mix, laser pulse duration is 30fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30{\text{f}}s$$\end{document} and wavelength 0.8μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.8 \mu m$$\end{document}. A bubble radius of over 20μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20{\mu m}$$\end{document} is achieved with a CP laser pulse at an intensity on the order of a0=7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{a}}_{0} = 7$$\end{document} (∼2.14×1020W/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 2.14 \times 10^{20} W/{\text{cm}}^{2}$$\end{document}), although the same can be achieved with an LP laser at a significantly higher intensity. The electron energy gain with a CP laser pulse appears to be above 3GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3{\text{GeV}}$$\end{document} at this intensity. CP laser pulse appeared with a lower transverse emittance and a higher energy gain than an LP laser pulse of the same intensity. In comparison to LP laser pulse, CP laser pulse appears to have a more effective acceleration mechanism for LWFA with DLA in the plasma-bubble regime.
引用
收藏
相关论文
共 50 条
  • [31] Properties of electron acceleration by a circularly polarized laser in vacuum
    Xu, J.J.
    Ho, Y.K.
    Kong, Q.
    Chen, Z.
    Wang, P.X.
    Wang, W.
    Lin, D.
    Journal of Applied Physics, 2005, 98 (05):
  • [32] Overloading effect of energetic electrons in the bubble regime of laser wakefield acceleration
    Xu, Jiancai
    Shen, Baifei
    Zhang, Xiaomei
    Wen, Meng
    Ji, Liangliang
    Wang, Wenpeng
    Yu, Yahong
    Li, Yuelin
    PHYSICS OF PLASMAS, 2010, 17 (10)
  • [33] Positron acceleration in plasma bubble wakefield driven by an ultraintense laser
    Hou, Ya-Juan
    Wan, Feng
    Sang, Hai-Bo
    Xie, Bai-Song
    PHYSICS OF PLASMAS, 2016, 23 (01)
  • [34] Stimulated Cherenkov Radiation of Accelerated Electrons in the Bubble Regime of Wakefield Acceleration: Direct Laser Deceleration
    Khudik, V.
    Zhang, X.
    Shvets, G.
    ADVANCED ACCELERATOR CONCEPTS, (AAC 2014), 2016, 1777
  • [35] Electron acceleration by a laser pulse in a plasma
    McKinstrie, CJ
    Startsev, EA
    PHYSICAL REVIEW E, 1996, 54 (02) : R1070 - R1073
  • [36] Mechanisms to control laser-plasma coupling in laser wakefield electron acceleration
    Dickson, L. T.
    Underwood, C. I. D.
    Filippi, F.
    Shalloo, R. J.
    Svensson, J. Bjorklund
    Guenot, D.
    Svendsen, K.
    Moulanier, I
    Dufrenoy, S. Dobosz
    Murphy, C. D.
    Lopes, N. C.
    Rajeev, P. P.
    Najmudin, Z.
    Cantono, G.
    Persson, A.
    Lundh, O.
    Maynard, G.
    Streeter, M. J., V
    Cros, B.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2022, 25 (10)
  • [37] Steady state ion acceleration by a circularly polarized laser pulse
    Zhang, Xiaomei
    Shen, Baifei
    Cang, Yu
    Li, Xuemei
    Jin, Zhangying
    Wang, Fengchao
    PHYSICS LETTERS A, 2007, 369 (04) : 339 - 344
  • [38] Wakefield driven by Gaussian (1,0) mode laser pulse and laser-plasma electron acceleration
    Che, H. O.
    Kong, Q.
    Mao, Q. Q.
    Wang, P. X.
    Ho, Y. K.
    Kawata, S.
    APPLIED PHYSICS LETTERS, 2009, 95 (09)
  • [39] Optimization of electron bunch quality using a chirped laser pulse in laser wakefield acceleration
    Jain, Arohi
    Gupta, Devki Nandan
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2021, 24 (11)
  • [40] Multiple Pulse Resonantly Enhanced Laser Plasma Wakefield Acceleration
    Corner, L.
    Walczak, R.
    Nevay, L. J.
    Dann, S.
    Hooker, S. M.
    Bourgeois, N.
    Cowley, J.
    ADVANCED ACCELERATOR CONCEPTS, 2012, 1507 : 872 - +