Laser wakefield and direct laser acceleration of electron in plasma bubble regime with circularly polarized laser pulse

被引:0
|
作者
Amrit Kumar
Niti Kant
Harjit Singh Ghotra
机构
[1] Lovely Professional University,Department of Physics
[2] Advanced Study Hub (ASH) – Theoretical and Computational Research Form (TCRF),undefined
来源
关键词
Circularly polarized laser pulse; Laser wakefield acceleration; Direct laser acceleration; Bubble regime; Dephasing length;
D O I
暂无
中图分类号
学科分类号
摘要
With a circularly polarized (CP) Gaussian laser pulse, we examine theoretically the acceleration of electrons due to a combined effect of laser wakefield (LW) and direct laser (DL) in the plasma bubble regime. The CP laser pulse is ideal for DLA, since it allows for better electron trapping in the plasma bubble regime than a linearly polarized (LP) laser pulse. As a result of a CP laser pulse propagation in z direction, the electrons are accelerated in longitudinal direction by the accelerating field (Wz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{W}}_{{\text{z}}}$$\end{document}) and focused in the transverse direction by the focusing fields (Wx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{W}}_{{\text{x}}}$$\end{document}, Wy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{W}}_{{\text{y}}}$$\end{document}). The density of plasma medium is about ∼1.8×1018cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 1.8 \times 10^{18} {\text{cm}}^{ - 3}$$\end{document} which is from a 99.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.9\%$$\end{document} He / 0.1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1\%$$\end{document} N2 neutral mix, laser pulse duration is 30fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30{\text{f}}s$$\end{document} and wavelength 0.8μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.8 \mu m$$\end{document}. A bubble radius of over 20μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20{\mu m}$$\end{document} is achieved with a CP laser pulse at an intensity on the order of a0=7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{a}}_{0} = 7$$\end{document} (∼2.14×1020W/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 2.14 \times 10^{20} W/{\text{cm}}^{2}$$\end{document}), although the same can be achieved with an LP laser at a significantly higher intensity. The electron energy gain with a CP laser pulse appears to be above 3GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3{\text{GeV}}$$\end{document} at this intensity. CP laser pulse appeared with a lower transverse emittance and a higher energy gain than an LP laser pulse of the same intensity. In comparison to LP laser pulse, CP laser pulse appears to have a more effective acceleration mechanism for LWFA with DLA in the plasma-bubble regime.
引用
收藏
相关论文
共 50 条
  • [21] Dependence of electron trapping on bubble geometry in laser-plasma wakefield acceleration
    Li, X. F.
    Gu, Y. J.
    Yu, Q.
    Huang, S.
    Zhang, F.
    Kong, Q.
    Kawata, S.
    PHYSICS OF PLASMAS, 2014, 21 (07)
  • [22] Plasma rotation with circularly polarized laser pulse
    Lecz, Z.
    Andreev, A.
    Seryi, A.
    LASER AND PARTICLE BEAMS, 2016, 34 (01) : 31 - 42
  • [23] Electron Acceleration in the Bubble Regime with Dense-Plasma Wall Driven by an Ultraintense Laser Pulse
    Wu Hai-Cheng
    Xie Bai-Song
    Yu Ming-Young
    CHINESE PHYSICS LETTERS, 2010, 27 (10)
  • [24] Plasma Wakefield Acceleration Driven by XCELS Laser Pulse
    Kutergin, D. D.
    Lotov, I. K.
    Minakov, V. A.
    Spitsyn, R. I.
    Tuev, P. V.
    Lotov, K. V.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2024, 21 (03) : 316 - 321
  • [25] Electron Acceleration in Wakefield and Supra-Bubble Regimes by Ultraintense Laser with Asymmetric Pulse
    Bake Maimaitiaili
    Xie Bai-Song
    Dulat Sayipjamal
    Aimidula Aimierding
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (05) : 883 - 887
  • [26] Electron Acceleration in Wakefield and Supra-Bubble Regimes by Ultraintense Laser with Asymmetric Pulse
    BAKE Maimaitiaili
    谢柏松
    DULAT Sayipjamal
    AIMIDULA Aimierding
    Communications in Theoretical Physics, 2011, 55 (05) : 883 - 887
  • [27] Laser wakefield acceleration in the Petawatt regime
    Mendonca, J. T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (02)
  • [28] Injection and acceleration of electron bunch in a plasma wakefield produced by a chirped laser pulse
    Afhami, Saeedeh
    Eslami, Esmaeil
    PHYSICS OF PLASMAS, 2014, 21 (06)
  • [29] Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration
    Li, X. F.
    Yu, Q.
    Gu, Y. J.
    Huang, S.
    Kong, Q.
    Kawata, S.
    PHYSICS OF PLASMAS, 2015, 22 (08)
  • [30] Properties of electron acceleration by a circularly polarized laser in vacuum
    Xu, JJ
    Ho, YK
    Kong, Q
    Chen, Z
    Wang, PX
    Wang, W
    Lin, D
    JOURNAL OF APPLIED PHYSICS, 2005, 98 (05)