Laser wakefield and direct laser acceleration of electron in plasma bubble regime with circularly polarized laser pulse

被引:0
|
作者
Amrit Kumar
Niti Kant
Harjit Singh Ghotra
机构
[1] Lovely Professional University,Department of Physics
[2] Advanced Study Hub (ASH) – Theoretical and Computational Research Form (TCRF),undefined
来源
关键词
Circularly polarized laser pulse; Laser wakefield acceleration; Direct laser acceleration; Bubble regime; Dephasing length;
D O I
暂无
中图分类号
学科分类号
摘要
With a circularly polarized (CP) Gaussian laser pulse, we examine theoretically the acceleration of electrons due to a combined effect of laser wakefield (LW) and direct laser (DL) in the plasma bubble regime. The CP laser pulse is ideal for DLA, since it allows for better electron trapping in the plasma bubble regime than a linearly polarized (LP) laser pulse. As a result of a CP laser pulse propagation in z direction, the electrons are accelerated in longitudinal direction by the accelerating field (Wz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{W}}_{{\text{z}}}$$\end{document}) and focused in the transverse direction by the focusing fields (Wx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{W}}_{{\text{x}}}$$\end{document}, Wy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{W}}_{{\text{y}}}$$\end{document}). The density of plasma medium is about ∼1.8×1018cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 1.8 \times 10^{18} {\text{cm}}^{ - 3}$$\end{document} which is from a 99.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.9\%$$\end{document} He / 0.1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1\%$$\end{document} N2 neutral mix, laser pulse duration is 30fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30{\text{f}}s$$\end{document} and wavelength 0.8μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.8 \mu m$$\end{document}. A bubble radius of over 20μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$20{\mu m}$$\end{document} is achieved with a CP laser pulse at an intensity on the order of a0=7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{a}}_{0} = 7$$\end{document} (∼2.14×1020W/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 2.14 \times 10^{20} W/{\text{cm}}^{2}$$\end{document}), although the same can be achieved with an LP laser at a significantly higher intensity. The electron energy gain with a CP laser pulse appears to be above 3GeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3{\text{GeV}}$$\end{document} at this intensity. CP laser pulse appeared with a lower transverse emittance and a higher energy gain than an LP laser pulse of the same intensity. In comparison to LP laser pulse, CP laser pulse appears to have a more effective acceleration mechanism for LWFA with DLA in the plasma-bubble regime.
引用
收藏
相关论文
共 50 条
  • [1] Laser wakefield and direct laser acceleration of electron in plasma bubble regime with circularly polarized laser pulse
    Kumar, Amrit
    Kant, Niti
    Ghotra, Harjit Singh
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (11)
  • [2] Direct Laser Acceleration in the Bubble Regime of Laser Wakefield Acceleration
    Zhang, X.
    Khudik, V.
    Shvets, G.
    ADVANCED ACCELERATOR CONCEPTS, (AAC 2014), 2016, 1777
  • [3] Electron acceleration by a circularly polarized laser pulse in a plasma
    Singh, KP
    PHYSICS OF PLASMAS, 2004, 11 (08) : 3992 - 3996
  • [4] Improvement of electron beam quality in laser wakefield acceleration by a circularly-polarized laser pulse
    Jain, A.
    Gupta, D. N.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (07)
  • [5] Synergistic Laser-Wakefield and Direct-Laser Acceleration in the Plasma-Bubble Regime
    Zhang, Xi
    Khudik, Vladimir N.
    Shvets, Gennady
    PHYSICAL REVIEW LETTERS, 2015, 114 (18)
  • [6] Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma
    Sharma, Vivek
    Kumar, Sandeep
    Kant, Niti
    Thakur, Vishal
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (13)
  • [7] Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma
    Vivek Sharma
    Sandeep Kumar
    Niti Kant
    Vishal Thakur
    Optical and Quantum Electronics, 2023, 55
  • [8] Plasma bubble evolution in laser wakefield acceleration in a petawatt regime
    Yadav, Monika
    Gupta, Devki Nandan
    Sharma, Suresh C.
    Suk, Hyyong
    LASER PHYSICS LETTERS, 2020, 17 (07)
  • [9] Dephasingless laser wakefield acceleration in the bubble regime
    Miller, Kyle G.
    Pierce, Jacob R.
    Ambat, Manfred V.
    Shaw, Jessica L.
    Weichman, Kale
    Mori, Warren B.
    Froula, Dustin H.
    Palastro, John P.
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [10] Dephasingless laser wakefield acceleration in the bubble regime
    Kyle G. Miller
    Jacob R. Pierce
    Manfred V. Ambat
    Jessica L. Shaw
    Kale Weichman
    Warren B. Mori
    Dustin H. Froula
    John P. Palastro
    Scientific Reports, 13 (1)