Tests of Predictive Viscosity Models for Pure Liquids

被引:0
作者
S. K. Das
R. P. Singh
机构
[1] Indian Institute of Technology Kanpur,Department of Chemical Engineering
来源
International Journal of Thermophysics | 1999年 / 20卷
关键词
alkanes; alkanols; alkenes; aromatics; corresponding states; cycloalkanes; esters; liquids; viscosity;
D O I
暂无
中图分类号
学科分类号
摘要
It is of considerable importance to be able to predict accurately the viscosity of liquids over a wide range of conditions. In the present work, the ability of the three-parameter generalized corresponding states principle (GCSP) for the prediction of the viscosity of pure liquids is demonstrated. The viscosity of six different classes of pure liquids, viz., alkanes (19 compounds; 207 data points), cycloalkanes (6 compounds; 74 data points), alkenes (9 compounds; 146 data points), aromatics (4 compounds; 123 data points), alkanols (8 compounds; 89 data points), and esters (4 compounds; 28 data points) have been predicted over a wide range of temperatures using the three-parameter (Tc, Pc, θ) GCSP. Five options for the third parameter (θ) were studied, viz., Pitzer's acentric factor ω, molar mass M, characteristic viscosity η*, critical compressibility factor Zc, and modified acentric factor Ω, in addition to groups ωZc and ΩZc being treated as composite third parameters. Pressure effects were neglected. Good agreement between experimental and predicted values of viscosity was obtained, especially with either ω or η* being used as the third parameter. Furthermore, the viscosities of alkanes predicted by the TRAPP method and an empirical, generalized one-parameter model for liquid hydrocarbons provide comparisons with the more accurate GCSP method. The GCSP provides a simple and yet a powerful technique for the correlation and prediction of viscosities of a variety of pure liquids over a wide range of temperatures.
引用
收藏
页码:815 / 823
页数:8
相关论文
共 51 条
[1]  
Mehrotra A. K.(1996)undefined Fluid Phase Equil. 117 344-undefined
[2]  
Monnery W. D.(1995)undefined Can. J. Chem. Eng. 73 3-undefined
[3]  
Svrcek W. Y.(1969)undefined Ind. Eng. Chem. Fundam. 8 791-undefined
[4]  
Monnery W. D.(1976)undefined Adv. Cryogen. Eng. 21 501-undefined
[5]  
Svrcek W. Y.(1981)undefined Ind. Eng. Chem. Fundam. 20 323-undefined
[6]  
Mehrotra A. K.(1991)undefined Can. J. Chem. Eng. 69 123-undefined
[7]  
Tham M. J.(1987)undefined Ind. Eng. Chem. Res. 26 1758-undefined
[8]  
Gubbins K. E.(1984)undefined Chem. Eng. Sci. 39 1011-undefined
[9]  
Haile J. M.(1981)undefined Chem. Eng. J. 21 21-undefined
[10]  
Mo K. C.(1981)undefined Ind. Eng. Chem. Fundam. 20 77-undefined