We develop the theory of a metric completion of an asymmetric metric space. We characterize the points on the boundary of Outer Space that are in the metric completion of Outer Space with the Lipschitz metric. We prove that the simplicial completion, the subset of the completion consisting of simplicial tree actions, is homeomorphic to the free splitting complex. We use this to give a new proof of a theorem by Francaviglia and Martino that the isometry group of Outer Space is isomorphic to Out(Fn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text {Out}}(F_{n})$$\end{document} for n≥3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \ge 3$$\end{document} and to PSL(2,Z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {PSL}(2,{{\mathbb {Z}}})$$\end{document} for n=2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n=2$$\end{document}.
机构:
Univ Utah, Dept Math, 155 South 1400 East,JWB 233, Salt Lake City, UT 84112 USAUniv Utah, Dept Math, 155 South 1400 East,JWB 233, Salt Lake City, UT 84112 USA
Bestvina, Mladen
Horbez, Camille
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Univ Paris Sud, CNRS, Lab Math Orsay, F-91405 Orsay, FranceUniv Utah, Dept Math, 155 South 1400 East,JWB 233, Salt Lake City, UT 84112 USA
机构:
Univ Western Australia, Digital Media & Commun Design, Crawley, WA 6009, AustraliaUniv Western Australia, Digital Media & Commun Design, Crawley, WA 6009, Australia