A minimum problem with free boundary for a degenerate quasilinear operator

被引:0
作者
Donatella Danielli
Arshak Petrosyan
机构
[1] Purdue University,Department of Mathematics
[2] University of Texas at Austin,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2005年 / 23卷
关键词
System Theory; Minimum Problem; Free Boundary; Type Minimum; Quasilinear Operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{1,\alpha}$\end{document} regularity (near flat points) of the free boundary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\partial\{u > 0\}\cap\Omega$\end{document} in the Alt-Caffarelli type minimum problem for the p-Laplace operator: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u)=\int_\Omega\left( |\nabla u|^p + \lambda^p\chi_{\{u>0\}}\right)dx\rightarrow \min\qquad (1<p<\infty).$$\end{document}
引用
收藏
页码:97 / 124
页数:27
相关论文
共 9 条
[1]  
Acker undefined(1977)undefined SIAM J. Math. Anal. 4 604-undefined
[2]  
Alt undefined(1981)undefined J. Reine Angew. Math. 325 105-undefined
[3]  
Alt undefined(4)undefined Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11 1-undefined
[4]  
Danielli undefined(2003)undefined Indiana Univ. Math. J. 52 457-undefined
[5]  
Henrot undefined(2000)undefined I. The exterior convex case. J. Reine Angew. Math. 521 85-undefined
[6]  
Henrot undefined(1)undefined II. The interior convex case. Indiana Univ. Math. J. 49 311-undefined
[7]  
Kinderlehrer undefined(1978)undefined J. Analyse Math. 34 86-undefined
[8]  
Lacey undefined(2)undefined IMA J. Appl. Math. 39 121-undefined
[9]  
Trudinger undefined(1967)undefined Comm. Pure Appl. Math. 20 721-undefined