A dual decomposition strategy for large-scale multiobjective evolutionary optimization

被引:0
|
作者
Cuicui Yang
Peike Wang
Junzhong Ji
机构
[1] Beijing University of Technology,Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science, Faculty of Information Technology
来源
关键词
Large-scale multiobjective optimization; Decomposition; Sliding window; Block coordinate descent;
D O I
暂无
中图分类号
学科分类号
摘要
Multiobjective evolutionary algorithms (MOEAs) have received much attention in multiobjective optimization in recent years due to their practicality. With limited computational resources, most existing MOEAs cannot efficiently solve large-scale multiobjective optimization problems (LSMOPs) that widely exist in the real world. This paper innovatively proposes a dual decomposition strategy (DDS) that can be embedded into many existing MOEAs to improve their performance in solving LSMOPs. Firstly, the outer decomposition uses a sliding window to divide large-scale decision variables into overlapped subsets of small-scale ones. A small-scale multiobjective optimization problem (MOP) is generated every time the sliding window slides. Then, once a small-scale MOP is generated, the inner decomposition immediately creates a set of global direction vectors to transform it into a set of single-objective optimization problems (SOPs). At last, all SOPs are optimized by adopting a block coordinate descent strategy, ensuring the solution’s integrity and improving the algorithm’s performance to some extent. Comparative experiments on benchmark test problems with seven state-of-the-art evolutionary algorithms and a deep learning-based algorithm framework have shown the remarkable efficiency and solution quality of the proposed DDS. Meanwhile, experiments on two real-world problems show that DDS can achieve the best performance beyond at least one order of magnitude with up to 3072 decision variables.
引用
收藏
页码:3767 / 3788
页数:21
相关论文
共 50 条
  • [1] A dual decomposition strategy for large-scale multiobjective evolutionary optimization
    Yang, Cuicui
    Wang, Peike
    Ji, Junzhong
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (05): : 3767 - 3788
  • [2] Evolutionary Multitasking for Large-Scale Multiobjective Optimization
    Liu, Songbai
    Lin, Qiuzhen
    Feng, Liang
    Wong, Ka-Chun
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (04) : 863 - 877
  • [3] A two-space-decomposition-based evolutionary algorithm for large-scale multiobjective optimization
    Yin, Feng
    Cao, Bin
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 83
  • [4] Evolutionary Large-Scale Multiobjective Optimization: Benchmarks and Algorithms
    Liu, Songbai
    Lin, Qiuzhen
    Wong, Ka-Chun
    Li, Qing
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (03) : 401 - 415
  • [5] Evolutionary Multiobjective Optimization with Endmember Priori Strategy for Large-Scale Hyperspectral Sparse Unmixing
    Wang, Zhao
    Wei, Jinxin
    Li, Jianzhao
    Li, Peng
    Xie, Fei
    ELECTRONICS, 2021, 10 (17)
  • [6] An Evolutionary Algorithm for Large-Scale Sparse Multiobjective Optimization Problems
    Tian, Ye
    Zhang, Xingyi
    Wang, Chao
    Jin, Yaochu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) : 380 - 393
  • [7] A Multivariation Multifactorial Evolutionary Algorithm for Large-Scale Multiobjective Optimization
    Feng, Yinglan
    Feng, Liang
    Kwong, Sam
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (02) : 248 - 262
  • [8] Learning to Accelerate Evolutionary Search for Large-Scale Multiobjective Optimization
    Liu, Songbai
    Li, Jun
    Lin, Qiuzhen
    Tian, Ye
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (01) : 67 - 81
  • [9] Iterated Problem Reformulation for Evolutionary Large-Scale Multiobjective Optimization
    He, Cheng
    Cheng, Ran
    Tian, Ye
    Zhang, Xingyi
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [10] Large-Scale Evolutionary Multiobjective Optimization Assisted by Directed Sampling
    Qin, Shufen
    Sun, Chaoli
    Jin, Yaochu
    Tan, Ying
    Fieldsend, Jonathan
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (04) : 724 - 738