Asymptotic Properties of a Stochastic SIR Epidemic Model with Beddington–DeAngelis Incidence Rate

被引:0
|
作者
Nguyen Thanh Dieu
机构
[1] Vinh University,Department of Mathematics
来源
Journal of Dynamics and Differential Equations | 2018年 / 30卷
关键词
SIR epidemic model; Extinction; Permanence; Stationary distribution; Ergodicity; 34C12; 60H10; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the stochastic SIR epidemic model with Beddington–DeAngelis incidence rate is investigated. We classify the model by introducing a threshold value λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. To be more specific, we show that if λ<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda <0$$\end{document} then the disease-free is globally asymptotic stable i.e., the disease will eventually disappear while the epidemic is persistence provided that λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}. In this case, we derive that the model under consideration has a unique invariant probability measure. We also depict the support of invariant probability measure and prove the convergence in total variation norm of transition probabilities to the invariant measure. Some of numerical examples are given to illustrate our results.
引用
收藏
页码:93 / 106
页数:13
相关论文
共 50 条
  • [1] Asymptotic Properties of a Stochastic SIR Epidemic Model with Beddington-DeAngelis Incidence Rate
    Nguyen Thanh Dieu
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (01) : 93 - 106
  • [2] Asymptotic properties of a stochastic SIQR epidemic model with Levy Jumps and Beddington-DeAngelis incidence rate
    El Koufi, Amine
    Bennar, Abdelkrim
    El Koufi, Nouhaila
    Yousfi, Noura
    RESULTS IN PHYSICS, 2021, 27
  • [3] Global insights into a stochastic SIRS epidemic model with Beddington-DeAngelis incidence rate
    Tang, Ruoshi
    Wang, Hao
    Qiu, Zhipeng
    Feng, Tao
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024,
  • [4] Dynamics of a Delayed Epidemic Model with Beddington-Deangelis Incidence Rate and a Constant Infectious Period
    Raji-allah, Abdelali
    Alaoui, Hamad Talibi
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2020, 9 (04) : 525 - 539
  • [5] Stability and Asymptotic Behavior of a Regime-Switching SIRS Model with Beddington-DeAngelis Incidence Rate
    Wang, Shan
    Peng, Youhua
    Wang, Feng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [6] Stationary distribution of a stochastic SIS epidemic model with double diseases and the Beddington-DeAngelis incidence
    Liu, Qun
    Jiang, Daqing
    CHAOS, 2017, 27 (08)
  • [7] The threshold for a stochastic HIV-1 infection model with Beddington-DeAngelis incidence rate
    Ji, Chunyan
    APPLIED MATHEMATICAL MODELLING, 2018, 64 : 168 - 184
  • [8] Asymptotic behavior of a stochastic SIR model with general incidence rate and nonlinear Levy jumps
    Yang, Qing
    Zhang, Xinhong
    Jiang, Daqing
    NONLINEAR DYNAMICS, 2022, 107 (03) : 2975 - 2993
  • [9] A stochastic SIRS epidemic model with nonlinear incidence rate
    Cai, Yongli
    Kang, Yun
    Wang, Weiming
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 305 : 221 - 240
  • [10] An epidemic model with Beddington-DeAngelis functional response and environmental fluctuations
    Liu, Fangfang
    Wei, Fengying
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 597