共 50 条
Asymptotic Properties of a Stochastic SIR Epidemic Model with Beddington–DeAngelis Incidence Rate
被引:0
|作者:
Nguyen Thanh Dieu
机构:
[1] Vinh University,Department of Mathematics
来源:
Journal of Dynamics and Differential Equations
|
2018年
/
30卷
关键词:
SIR epidemic model;
Extinction;
Permanence;
Stationary distribution;
Ergodicity;
34C12;
60H10;
92D25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, the stochastic SIR epidemic model with Beddington–DeAngelis incidence rate is investigated. We classify the model by introducing a threshold value λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda $$\end{document}. To be more specific, we show that if λ<0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda <0$$\end{document} then the disease-free is globally asymptotic stable i.e., the disease will eventually disappear while the epidemic is persistence provided that λ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda >0$$\end{document}. In this case, we derive that the model under consideration has a unique invariant probability measure. We also depict the support of invariant probability measure and prove the convergence in total variation norm of transition probabilities to the invariant measure. Some of numerical examples are given to illustrate our results.
引用
收藏
页码:93 / 106
页数:13
相关论文