Compressive strength prediction of high-strength oil palm shell lightweight aggregate concrete using machine learning methods

被引:0
作者
Saeed Ghanbari
Amir Ali Shahmansouri
Habib Akbarzadeh Bengar
Abouzar Jafari
机构
[1] University of Mazandaran,Department of Civil Engineering
[2] University of Michigan and Shanghai Jiao Tong University Joint Institute,undefined
[3] Shanghai Jiao Tong University,undefined
来源
Environmental Science and Pollution Research | 2023年 / 30卷
关键词
Agricultural waste; Lightweight aggregate concrete; High-strength concrete; Strength prediction; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
Promoting the use of agricultural wastes/byproducts in concrete production can significantly reduce environmental effects and contribute to sustainable development. Several experimental investigations on such concrete’s compressive strength (fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document}) and behavior have been done. The results of 229 concrete samples made by oil palm shell (OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document}) as a lightweight aggregate (LWA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LWA$$\end{document}) were used to develop models for predicting the fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document} of the high-strength lightweight aggregate concrete (HS-LWAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HS-LWAC$$\end{document}). To this end, gene expression programming (GEP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GEP$$\end{document}), adaptive neuro-fuzzy inference system (ANFIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANFIS$$\end{document}), artificial neural network (ANN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANN$$\end{document}), and multiple linear regression (MLR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$MLR$$\end{document}) are employed as machine learning (ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ML$$\end{document}) and regression methods. The water-to-binder (W/B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W/B$$\end{document}) ratio, ordinary Portland cement (OPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPC$$\end{document}), fly ash (FA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FA$$\end{document}), silica fume (SF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SF$$\end{document}), fine aggregate (Sand\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Sand$$\end{document}), natural coarse aggregate (Gravel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Gravel$$\end{document}), OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document}, superplasticizer (SP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SP$$\end{document}) contents, and specimen age are among the nine input parameters used in the developed models. The results show that all ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ML$$\end{document}-based models efficiently predict the HS-LWAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HS-LWAC$$\end{document}’s fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document}, which comprised OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document} agricultural wastes. According to the results, the ANN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANN$$\end{document} model outperformed the GEP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GEP$$\end{document} and ANFIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANFIS$$\end{document} models. Moreover, an uncertainty analysis through the Monte Carlo simulation (MCS) method was applied to the prediction results. The growing demand for sustainable development and the crucial role of eco-friendly concrete in the construction industry can pave the way for further application of the developed models due to their superior robustness and high accuracy in future codes of practice.
引用
收藏
页码:1096 / 1115
页数:19
相关论文
共 252 条
  • [31] Shafigh P(2020)Appropriate drying shrinkage prediction models for lightweight concrete containing coarse agro-waste aggregate J Build Eng 29 101148-621
  • [32] Jumaat MZ(2015)Influence of lightweight aggregate on the bond properties of concrete with various strength grades Constr Build Mater 84 377-238
  • [33] Aslam M(2018)Properties of metakaolin-blended oil palm shell lightweight concrete Eur J Environ Civ Eng 22 852-327
  • [34] Shafigh P(2020)Viability of agricultural wastes as substitute of natural aggregate in concrete: a review on the durability-related properties J Clean Prod 275 123062-117
  • [35] Jumaat MZ(2021)Novel metaheuristic-based type-2 fuzzy inference system for predicting the compressive strength of recycled aggregate concrete J Clean Prod 320 128771-196
  • [36] Chinnu SN(2020)Properties of oil palm shell lightweight aggregate concrete containing fly ash as partial cement replacement IOP Conference Series: Materials Science and Engineering 849 012048-157
  • [37] Minnu SN(2021)Predictive modelling of piezometric head and seepage discharge in earth dam using soft computational models Environ Sci Pollut Res 28 60842-260
  • [38] Bahurudeen A(2016)Cementitious materials and agricultural wastes as natural fine aggregate replacement in conventional mortar and concrete J Build Eng 5 119-468
  • [39] Senthilkumar R(2021)Recycling of spent coffee grounds in construction materials: a review J Clean Prod 289 125837-561
  • [40] Chou J-S(2019)Effects of hauling time on self-consolidating mortars containing metakaolin and natural zeolite Constr Build Mater 221 283-6756