Compressive strength prediction of high-strength oil palm shell lightweight aggregate concrete using machine learning methods

被引:0
作者
Saeed Ghanbari
Amir Ali Shahmansouri
Habib Akbarzadeh Bengar
Abouzar Jafari
机构
[1] University of Mazandaran,Department of Civil Engineering
[2] University of Michigan and Shanghai Jiao Tong University Joint Institute,undefined
[3] Shanghai Jiao Tong University,undefined
来源
Environmental Science and Pollution Research | 2023年 / 30卷
关键词
Agricultural waste; Lightweight aggregate concrete; High-strength concrete; Strength prediction; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
Promoting the use of agricultural wastes/byproducts in concrete production can significantly reduce environmental effects and contribute to sustainable development. Several experimental investigations on such concrete’s compressive strength (fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document}) and behavior have been done. The results of 229 concrete samples made by oil palm shell (OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document}) as a lightweight aggregate (LWA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LWA$$\end{document}) were used to develop models for predicting the fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document} of the high-strength lightweight aggregate concrete (HS-LWAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HS-LWAC$$\end{document}). To this end, gene expression programming (GEP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GEP$$\end{document}), adaptive neuro-fuzzy inference system (ANFIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANFIS$$\end{document}), artificial neural network (ANN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANN$$\end{document}), and multiple linear regression (MLR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$MLR$$\end{document}) are employed as machine learning (ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ML$$\end{document}) and regression methods. The water-to-binder (W/B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W/B$$\end{document}) ratio, ordinary Portland cement (OPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPC$$\end{document}), fly ash (FA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FA$$\end{document}), silica fume (SF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SF$$\end{document}), fine aggregate (Sand\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Sand$$\end{document}), natural coarse aggregate (Gravel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Gravel$$\end{document}), OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document}, superplasticizer (SP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SP$$\end{document}) contents, and specimen age are among the nine input parameters used in the developed models. The results show that all ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ML$$\end{document}-based models efficiently predict the HS-LWAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HS-LWAC$$\end{document}’s fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document}, which comprised OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document} agricultural wastes. According to the results, the ANN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANN$$\end{document} model outperformed the GEP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GEP$$\end{document} and ANFIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANFIS$$\end{document} models. Moreover, an uncertainty analysis through the Monte Carlo simulation (MCS) method was applied to the prediction results. The growing demand for sustainable development and the crucial role of eco-friendly concrete in the construction industry can pave the way for further application of the developed models due to their superior robustness and high accuracy in future codes of practice.
引用
收藏
页码:1096 / 1115
页数:19
相关论文
共 252 条
  • [1] Ahmad Zawawi MNA(2020)Mechanical properties of oil palm waste lightweight aggregate concrete with fly ash as fine aggregate replacement J Build Eng 27 100924-420
  • [2] Muthusamy K(2008)Ductility behaviour of reinforced palm kernel shell concrete beams Eur J Sci Res 23 406-172
  • [3] Abdul Majeed APP(2013)Utilization of oil palm kernel shell as lightweight aggregate in concrete – a review Constr Build Mater 38 161-531
  • [4] Muazu Musa R(1974)A robust method for multiple linear regression Technometrics 16 523-342
  • [5] Mokhtar Albshir Budiea A(2022)Post-fire behavior evaluation of concrete mixtures containing natural zeolite using a novel metaheuristic-based machine learning method Archiv Civ Mech Eng 22 101-73
  • [6] Alengaram UJ(2015)Structural lightweight aggregate concrete by incorporating solid wastes as coarse lightweight aggregate Appl Mech Mater 749 337-194
  • [7] Jumaat MZ(2016)Oil-palm by-products as lightweight aggregate in concrete mixture: a review J Clean Prod 126 56-117
  • [8] Mahmud H(2016)Drying shrinkage behaviour of structural lightweight aggregate concrete containing blended oil palm bio-products J Clean Prod 127 183-675
  • [9] Alengaram UJ(2016)Benefits of using blended waste coarse lightweight aggregates in structural lightweight aggregate concrete J Clean Prod 119 108-5008
  • [10] Muhit BAA(2017)High strength lightweight aggregate concrete using blended coarse lightweight aggregate origin from palm oil industry Sains Malaysiana 46 667-563