Compressive strength prediction of high-strength oil palm shell lightweight aggregate concrete using machine learning methods

被引:0
|
作者
Saeed Ghanbari
Amir Ali Shahmansouri
Habib Akbarzadeh Bengar
Abouzar Jafari
机构
[1] University of Mazandaran,Department of Civil Engineering
[2] University of Michigan and Shanghai Jiao Tong University Joint Institute,undefined
[3] Shanghai Jiao Tong University,undefined
关键词
Agricultural waste; Lightweight aggregate concrete; High-strength concrete; Strength prediction; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
Promoting the use of agricultural wastes/byproducts in concrete production can significantly reduce environmental effects and contribute to sustainable development. Several experimental investigations on such concrete’s compressive strength (fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document}) and behavior have been done. The results of 229 concrete samples made by oil palm shell (OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document}) as a lightweight aggregate (LWA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$LWA$$\end{document}) were used to develop models for predicting the fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document} of the high-strength lightweight aggregate concrete (HS-LWAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HS-LWAC$$\end{document}). To this end, gene expression programming (GEP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GEP$$\end{document}), adaptive neuro-fuzzy inference system (ANFIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANFIS$$\end{document}), artificial neural network (ANN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANN$$\end{document}), and multiple linear regression (MLR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$MLR$$\end{document}) are employed as machine learning (ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ML$$\end{document}) and regression methods. The water-to-binder (W/B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W/B$$\end{document}) ratio, ordinary Portland cement (OPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPC$$\end{document}), fly ash (FA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FA$$\end{document}), silica fume (SF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SF$$\end{document}), fine aggregate (Sand\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Sand$$\end{document}), natural coarse aggregate (Gravel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Gravel$$\end{document}), OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document}, superplasticizer (SP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SP$$\end{document}) contents, and specimen age are among the nine input parameters used in the developed models. The results show that all ML\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ML$$\end{document}-based models efficiently predict the HS-LWAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HS-LWAC$$\end{document}’s fc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f}_{c}$$\end{document}, which comprised OPS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$OPS$$\end{document} agricultural wastes. According to the results, the ANN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANN$$\end{document} model outperformed the GEP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$GEP$$\end{document} and ANFIS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ANFIS$$\end{document} models. Moreover, an uncertainty analysis through the Monte Carlo simulation (MCS) method was applied to the prediction results. The growing demand for sustainable development and the crucial role of eco-friendly concrete in the construction industry can pave the way for further application of the developed models due to their superior robustness and high accuracy in future codes of practice.
引用
收藏
页码:1096 / 1115
页数:19
相关论文
共 50 条
  • [1] Compressive strength prediction of high-strength oil palm shell lightweight aggregate concrete using machine learning methods
    Ghanbari, Saeed
    Shahmansouri, Amir Ali
    Bengar, Habib Akbarzadeh
    Jafari, Abouzar
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (01) : 1096 - 1115
  • [2] Compressive strength prediction of high-strength concrete using machine learning
    Davawala, Manan
    Joshi, Tanmay
    Shah, Manan
    EMERGENT MATERIALS, 2023, 6 (01) : 321 - 335
  • [3] Compressive strength prediction of high-strength concrete using machine learning
    Manan Davawala
    Tanmay Joshi
    Manan Shah
    Emergent Materials, 2023, 6 : 321 - 335
  • [4] Oil palm shell as a lightweight aggregate for production high strength lightweight concrete
    Shafigh, Payam
    Jumaat, Mohd Zamin
    Mahmud, Hilmi
    CONSTRUCTION AND BUILDING MATERIALS, 2011, 25 (04) : 1848 - 1853
  • [5] Compressive strength prediction model of lightweight high-strength concrete
    Zhang, L. N.
    He, D. P.
    Xu, W. Y.
    Zhao, Q. Q.
    Teng, S. B.
    MAGAZINE OF CIVIL ENGINEERING, 2022, 115 (07):
  • [6] Effects of Oil Palm Shell Coarse Aggregate Species on High Strength Lightweight Concrete
    Yew, Ming Kun
    Bin Mahmud, Hilmi
    Ang, Bee Chin
    Yew, Ming Chian
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [7] Effect of mixing ingredient on compressive strength of oil palm shell lightweight aggregate concrete containing palm oil fuel ash
    Muthusamy, Khairunisa
    Zamri, Nurazzimah
    Zubir, Mohammad Amirulkhairi
    Kusbiantoro, Andri
    Ahmad, Saffuan Wan
    CIVIL ENGINEERING INNOVATION FOR A SUSTAINABLE, 2015, 125 : 804 - 810
  • [8] Prediction and uncertainty quantification of compressive strength of high-strength concrete using optimized machine learning algorithms
    Han, Bing
    Wu, Yanqi
    Liu, Lulu
    STRUCTURAL CONCRETE, 2022, 23 (06) : 3772 - 3785
  • [9] Prediction of compressive strength of recycled aggregate concrete using machine learning and Bayesian optimization methods
    Zhang, Xinyi
    Dai, Chengyuan
    Li, Weiyu
    Chen, Yang
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [10] Compressive Strength Prediction of Lightweight Concrete: Machine Learning Models
    Kumar, Aman
    Arora, Harish Chandra
    Kapoor, Nishant Raj
    Mohammed, Mazin Abed
    Kumar, Krishna
    Majumdar, Arnab
    Thinnukool, Orawit
    SUSTAINABILITY, 2022, 14 (04)