Weighted Fractional Leibniz-Type Rules for Bilinear Multiplier Operators

被引:0
|
作者
Joshua Brummer
Virginia Naibo
机构
[1] Kansas State University,Department of Mathematics
来源
Potential Analysis | 2019年 / 51卷
关键词
Kato–Ponce inequalities; Fractional Leibniz rules; Weights; Coifman–Meyer multipliers; Biparameter Coifman–Meyer multipliers; Primary: 42B25, 42B15; Secondary: 42B20, 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
We prove weighted fractional Leibniz-type rules for Coifman–Meyer and biparameter Coifman–Meyer multiplier operators. Mapping properties of such operators in the scale of weighted Sobolev spaces then follow. Our results constitute natural extensions of the estimates corresponding to a multiplier identically equal to one and, even in this situation, they lead to new weighted inequalities.
引用
收藏
页码:71 / 99
页数:28
相关论文
共 50 条
  • [31] THE MINKOWSKI TYPE INEQUALITIES FOR WEIGHTED FRACTIONAL OPERATORS
    Yildiz, Cetin
    Gurbuz, Mustafa
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (03): : 884 - 897
  • [32] Weighted Local Estimates for Fractional Type Operators
    Torchinsky, Alberto
    POTENTIAL ANALYSIS, 2014, 41 (03) : 869 - 885
  • [33] Linear and Bilinear Multiplier Operators for the Dunkl Transform
    Bechir Amri
    Abdessalem Gasmi
    Mohamed Sifi
    Mediterranean Journal of Mathematics, 2010, 7 : 503 - 521
  • [34] Linear and Bilinear Multiplier Operators for the Dunkl Transform
    Amri, Bechir
    Gasmi, Abdessalem
    Sifi, Mohamed
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (04) : 503 - 521
  • [35] BOUNDEDNESS CRITERION FOR BILINEAR FOURIER MULTIPLIER OPERATORS
    Miyachi, Akihiko
    Tomita, Naohito
    TOHOKU MATHEMATICAL JOURNAL, 2014, 66 (01) : 55 - 76
  • [36] Transference of bilinear multiplier operators on Lorentz spaces
    Blasco, O
    Villarroya, F
    ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (04) : 1327 - 1343
  • [37] Commutativity of the Leibniz rules in fractional calculus
    Tu, ST
    Wu, TC
    Srivastava, HM
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (2-3) : 303 - 312
  • [38] Weighted endpoint fractional Leibniz rule
    Xinfeng Wu
    Archiv der Mathematik, 2022, 118 : 399 - 412
  • [39] Weighted endpoint fractional Leibniz rule
    Wu, Xinfeng
    ARCHIV DER MATHEMATIK, 2022, 118 (04) : 399 - 412
  • [40] Weighted estimates for a class of multilinear fractional type operators
    Chen, Xi
    Xue, Qingying
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) : 355 - 373