Weighted Fractional Leibniz-Type Rules for Bilinear Multiplier Operators

被引:0
|
作者
Joshua Brummer
Virginia Naibo
机构
[1] Kansas State University,Department of Mathematics
来源
Potential Analysis | 2019年 / 51卷
关键词
Kato–Ponce inequalities; Fractional Leibniz rules; Weights; Coifman–Meyer multipliers; Biparameter Coifman–Meyer multipliers; Primary: 42B25, 42B15; Secondary: 42B20, 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
We prove weighted fractional Leibniz-type rules for Coifman–Meyer and biparameter Coifman–Meyer multiplier operators. Mapping properties of such operators in the scale of weighted Sobolev spaces then follow. Our results constitute natural extensions of the estimates corresponding to a multiplier identically equal to one and, even in this situation, they lead to new weighted inequalities.
引用
收藏
页码:71 / 99
页数:28
相关论文
共 50 条
  • [1] Weighted Fractional Leibniz-Type Rules for Bilinear Multiplier Operators
    Brummer, Joshua
    Naibo, Virginia
    POTENTIAL ANALYSIS, 2019, 51 (01) : 71 - 99
  • [2] Erratum: Weighted Fractional Leibniz-type Rules for Bilinear Multiplier Operators
    Joshua Brummer
    Virginia Naibo
    Potential Analysis, 2024, 60 : 917 - 920
  • [3] Weighted Fractional Leibniz-type Rules for Bilinear Multiplier Operators (vol 51, pg 71, 2019)
    Brummer, Joshua
    Naibo, Virginia
    POTENTIAL ANALYSIS, 2024, 60 (02) : 917 - 920
  • [4] Leibniz-Type Rules for Bilinear and Biparameter Fourier Multiplier Operators with Applications
    Yang, Jiexing
    Liu, Zongguang
    Wu, Xinfeng
    POTENTIAL ANALYSIS, 2021, 55 (02) : 189 - 209
  • [5] Leibniz-Type Rules for Bilinear Fourier Multiplier Operators with Besov Regularity
    Zongguang Liu
    Xinfeng Wu
    Jiexing Yang
    Results in Mathematics, 2022, 77
  • [6] Leibniz-Type Rules for Bilinear Fourier Multiplier Operators with Besov Regularity
    Liu, Zongguang
    Wu, Xinfeng
    Yang, Jiexing
    RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [7] Leibniz-Type Rules for Bilinear and Biparameter Fourier Multiplier Operators with Applications
    Jiexing Yang
    Zongguang Liu
    Xinfeng Wu
    Potential Analysis, 2021, 55 : 189 - 209
  • [8] Weighted Leibniz-type rules for bilinear flag multipliers
    Yang, Jiexing
    Liu, Zongguang
    Wu, Xinfeng
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (03)
  • [9] Weighted Leibniz-type rules for bilinear flag multipliers
    Jiexing Yang
    Zongguang Liu
    Xinfeng Wu
    Banach Journal of Mathematical Analysis, 2021, 15
  • [10] Bilinear Sobolev–Poincaré Inequalities and Leibniz-Type Rules
    Frédéric Bernicot
    Diego Maldonado
    Kabe Moen
    Virginia Naibo
    The Journal of Geometric Analysis, 2014, 24 : 1144 - 1180