Global existence for the periodic dispersive Hunter–Saxton equation

被引:0
作者
Weikui Ye
Zhaoyang Yin
机构
[1] Sun Yat-sen University,Department of Mathematics
[2] Macau University of Science and Technology,Faculty of Information Technology
来源
Monatshefte für Mathematik | 2020年 / 191卷
关键词
The periodic dispersive Hunter–Saxton equation; Local well-posedness; The Kato method; Global existence; 35A01; 35L03; 35L05; 35L60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study an integrable dispersive Hunter–Saxton equation in periodic domain. Firstly, we establish the local well-posedness of the Cauchy problem of the equation in Hs(S),s≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s ({\mathbb {S}}), s \ge 2,$$\end{document} by applying the Kato method. Then, based on a sign-preserve property, we obtain a global existence result for the equation. Moreover, we extend the obtained result to some periodic nonlinear partial differential equations of second order of the general form.
引用
收藏
页码:267 / 278
页数:11
相关论文
共 79 条
  • [11] Constantin A(1997)The Hamiltonian structure of the Camassa–Holm equation Expo. Math. 15 53-85
  • [12] Constantin A(1998)Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation Commun. Pure Appl. Math. 51 475-504
  • [13] Constantin A(1998)Wave breaking for nonlinear nonlocal shallow water equations Acta Math. 181 229-243
  • [14] Constantin A(2007)Particle trajectories in solitary water waves Bull. Am. Math. Soc. 44 423-431
  • [15] Constantin A(2011)Analyticity of periodic traveling free surface water waves with vorticity Ann. Math. 173 559-568
  • [16] Constantin A(2006)Inverse scattering transform for the Camassa–Holm equation Inverse Probl. 22 2197-2207
  • [17] Constantin A(1999)A shallow water equation on the circle Commun. Pure Appl. Math. 52 949-982
  • [18] Escher J(2000)Global weak solutions for a shallow water equation Commun. Math. Phys. 211 45-61
  • [19] Constantin A(2000)Stability of peakons Commun. Pure Appl. Math. 53 603-610
  • [20] Escher J(1998)Transformations for the Camassa–Holm equation, its high-frequency limit and the Sinh–Gordon equation J. P. Soc. Jpn. 67 3655-3657