Global existence for the periodic dispersive Hunter–Saxton equation

被引:0
作者
Weikui Ye
Zhaoyang Yin
机构
[1] Sun Yat-sen University,Department of Mathematics
[2] Macau University of Science and Technology,Faculty of Information Technology
来源
Monatshefte für Mathematik | 2020年 / 191卷
关键词
The periodic dispersive Hunter–Saxton equation; Local well-posedness; The Kato method; Global existence; 35A01; 35L03; 35L05; 35L60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study an integrable dispersive Hunter–Saxton equation in periodic domain. Firstly, we establish the local well-posedness of the Cauchy problem of the equation in Hs(S),s≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s ({\mathbb {S}}), s \ge 2,$$\end{document} by applying the Kato method. Then, based on a sign-preserve property, we obtain a global existence result for the equation. Moreover, we extend the obtained result to some periodic nonlinear partial differential equations of second order of the general form.
引用
收藏
页码:267 / 278
页数:11
相关论文
共 79 条
  • [1] Beals R(2001)Inverse scattering solutions of the Hunter–Saxton equations Appl. Anal. 78 255-269
  • [2] Sattinger D(2005)Ostrovsky and Hunter’s generic wave equation for weakly dispersive waves: matched asymptotic and pseudospectral study of the paraboloidal travelling waves (corner and near-corner waves) Eur. J. Appl. Math. 16 65-81
  • [3] Szmigielski J(2005)Microbreaking and polycnoidal waves in the Ostrovsky–Hunter equation Phys. Lett. A 338 36-43
  • [4] Boyd J(2005)Global solutions of the Hunter–Saxton equation SIAM J. Math. Anal. 37 996-1026
  • [5] Boyd JP(2007)Global conservative solutions of the Camassa–Holm equation Arch. Ration. Mech. Anal. 183 215-239
  • [6] Bressan A(2007)Global dissipative solutions of the Camassa–Holm equation Anal. Appl. 5 1-27
  • [7] Constantin A(2001)On the scattering problem for the Camassa–Holm equation Proc. R. Soc. Lond. A 457 953-970
  • [8] Bressan A(2000)Existence of permanent and breaking waves for a shallow water equation: a geometric approach Ann. Inst. Fourier (Grenoble) 50 321-362
  • [9] Constantin A(2006)The trajectories of particles in Stokes waves Invent. Math. 166 523-535
  • [10] Bressan A(2012)Particle trajectories in extreme Stokes waves IMA J. Appl. Math. 77 293-307