Tetrads in Yang-Mills geometrodynamics

被引:0
|
作者
Alcides Garat
机构
[1] Instituto de Física,
[2] Facultad de Ciencias,undefined
来源
Gravitation and Cosmology | 2014年 / 20卷
关键词
Gauge Transformation; Local Group; Local Gauge; Local Transformation; Abelian Case;
D O I
暂无
中图分类号
学科分类号
摘要
The relationship between gauge and gravity amounts to understanding underlying new geometric local structures. These structures are new tetrads specially devised for Yang-Mills theories, Abelian and Non-Abelian in 4D Lorentzian spacetimes. In the present paper, a new tetrad is introduced for the Yang-Mills SU(2) × U(1) formulation. These new tetrads establish a link between local groups of gauge transformations and local groups of spacetime transformations. New theorems are proved regarding isomorphisms between local internal SU(2) × U(1) groups and local tensor products of spacetime LB1 and LB2 groups of transformations. The new tetrads and the stress-energy tensor allow for introduction of three new local gauge-invariant objects. Using these new gauge invariant objects and in addition a new general local duality transformation, a new algorithm for gauge-invariant diagonalization of the Yang-Mills stress-energy tensor is developed.
引用
收藏
页码:116 / 126
页数:10
相关论文
共 50 条
  • [31] PROPAGATION OF YANG-MILLS FIELDS
    SHAMALY, A
    AHMED, MA
    CAPRI, AZ
    KOBAYASHI, M
    ANNALEN DER PHYSIK, 1979, 36 (01) : 40 - 46
  • [32] CLASSIFICATION OF YANG-MILLS FIELDS
    CARMELI, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1979, 52 (04): : 545 - 565
  • [33] Yang-Mills magnetofluid unification
    Bambah, Bindu A.
    Mahajan, Swadesh M.
    Mukku, Chandrasekher
    PHYSICAL REVIEW LETTERS, 2006, 97 (07)
  • [34] YANG-MILLS THEORY ON A CIRCLE
    HETRICK, JE
    HOSOTANI, Y
    PHYSICS LETTERS B, 1989, 230 (1-2) : 88 - 92
  • [35] NONEXISTENCE OF YANG-MILLS FIELDS
    LOOS, HG
    NUOVO CIMENTO A, 1968, 53 (01): : 201 - +
  • [36] Elliptic Yang-Mills equation
    Tian, G
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (24) : 15281 - 15286
  • [37] YANG-MILLS THEORY ON A CYLINDER
    RAJEEV, SG
    PHYSICS LETTERS B, 1988, 212 (02) : 203 - 205
  • [38] Representations of Yang-Mills algebras
    Herscovich, Estanislao
    Solotar, Andrea
    ANNALS OF MATHEMATICS, 2011, 173 (02) : 1043 - 1080
  • [39] On blowup of Yang-Mills fields
    Bizon, P
    Tabor, Z
    PHYSICAL REVIEW D, 2001, 64 (12)
  • [40] MASSIVE YANG-MILLS FIELDS
    REIFF, J
    VELTMAN, M
    NUCLEAR PHYSICS B, 1969, B 13 (03) : 545 - &