GPU Framework for Change Detection in Multitemporal Hyperspectral Images

被引:0
|
作者
Javier López-Fandiño
Dora B. Heras
Francisco Argüello
Mauro Dalla Mura
机构
[1] Universidade de Santiago de Compostela,Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS)
[2] Institute of Engineering,GIPSA
[3] CNRS,lab
[4] Grenoble INP,undefined
[5] Université Grenoble Alpes,undefined
来源
International Journal of Parallel Programming | 2019年 / 47卷
关键词
Hyperspectral change detection; Segmentation; Spectral Angle Mapper; Change Vector Analysis; GPU; CUDA;
D O I
暂无
中图分类号
学科分类号
摘要
Nowadays, it is increasingly common to detect land cover changes using remote sensing multispectral images captured at different time-frames over the same area. A large part of the available change detection (CD) methods focus on pixel-based operations. The use of spectral–spatial techniques helps to improve the accuracy results but also implies a significant increase in processing time. In this paper, a Graphic Processor Unit (GPU) framework to perform object-based CD in multitemporal remote sensing hyperspectral data is presented. It is based on Change Vector Analysis with the Spectral Angle Mapper distance and Otsu’s thresholding. Spatial information is taken into account by considering watershed segmentation. The GPU implementation achieves real-time execution and speedups of up to 46.5×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} with respect to an OpenMP implementation.
引用
收藏
页码:272 / 292
页数:20
相关论文
共 50 条
  • [41] Slow Feature Analysis for Hyperspectral Change Detection
    Wu, Chen
    Due, Bo
    Zhang, Liangpei
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [42] Detection of urban expansion in an urban-rural landscape with multitemporal QuickBird images
    Lu, Dengsheng
    Hetrick, Scott
    Moran, Emilio
    Li, Guiying
    JOURNAL OF APPLIED REMOTE SENSING, 2010, 4
  • [43] Change detection in satellite images
    Thönnessen, U
    Hofele, G
    Middelmann, W
    Signal Processing, Sensor Fusion, and Target Recognition XIV, 2005, 5809 : 197 - 207
  • [44] Edge Detection for Hyperspectral Images Using the Bhattacharyya Distance
    Youn, Sungwook
    Lee, Chulhee
    2013 19TH IEEE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS 2013), 2013, : 716 - 719
  • [45] Gravitation-Based Edge Detection in Hyperspectral Images
    Sun, Genyun
    Zhang, Aizhu
    Ren, Jinchang
    Ma, Jingsheng
    Wang, Peng
    Zhang, Yuanzhi
    Jia, Xiuping
    REMOTE SENSING, 2017, 9 (06)
  • [46] Extended Anisotropic Diffusion Profiles in GPU for Hyperspectral Imagery
    Accion, Alvaro
    Arguello, Francisco
    Heras, Dora B.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 4964 - 4976
  • [47] Automatic Change Detection Method of Multitemporal Remote Sensing Images Based on 2D-Otsu Algorithm Improved by Firefly Algorithm
    Huang, Liang
    Fang, Yuanmin
    Zuo, Xiaoqing
    Yu, Xueqin
    JOURNAL OF SENSORS, 2015, 2015
  • [48] Enhancing Binary Change Detection in Hyperspectral Images Using an Efficient Dimensionality Reduction Technique Within Adversarial Learning
    Oubara, Amel
    Wu, Falin
    Qu, Guoxin
    Maleki, Reza
    Yang, Gongliu
    REMOTE SENSING, 2025, 17 (01)
  • [49] Novel Distribution Distance Based on Inconsistent Adaptive Region for Change Detection Using Hyperspectral Remote Sensing Images
    Lv, Zhiyong
    Lei, Zhengjie
    Xie, Linfu
    Falco, Nicola
    Shi, Cheng
    You, Zhenzhen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [50] Change Detection in Multitemporal High Spatial Resolution Remote-Sensing Images Based on Saliency Detection and Spatial Intuitionistic Fuzzy C-Means Clustering
    Huang, Liang
    Peng, Qiuzhi
    Yu, Xueqin
    JOURNAL OF SPECTROSCOPY, 2020, 2020