GPU Framework for Change Detection in Multitemporal Hyperspectral Images

被引:0
|
作者
Javier López-Fandiño
Dora B. Heras
Francisco Argüello
Mauro Dalla Mura
机构
[1] Universidade de Santiago de Compostela,Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS)
[2] Institute of Engineering,GIPSA
[3] CNRS,lab
[4] Grenoble INP,undefined
[5] Université Grenoble Alpes,undefined
来源
International Journal of Parallel Programming | 2019年 / 47卷
关键词
Hyperspectral change detection; Segmentation; Spectral Angle Mapper; Change Vector Analysis; GPU; CUDA;
D O I
暂无
中图分类号
学科分类号
摘要
Nowadays, it is increasingly common to detect land cover changes using remote sensing multispectral images captured at different time-frames over the same area. A large part of the available change detection (CD) methods focus on pixel-based operations. The use of spectral–spatial techniques helps to improve the accuracy results but also implies a significant increase in processing time. In this paper, a Graphic Processor Unit (GPU) framework to perform object-based CD in multitemporal remote sensing hyperspectral data is presented. It is based on Change Vector Analysis with the Spectral Angle Mapper distance and Otsu’s thresholding. Spatial information is taken into account by considering watershed segmentation. The GPU implementation achieves real-time execution and speedups of up to 46.5×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} with respect to an OpenMP implementation.
引用
收藏
页码:272 / 292
页数:20
相关论文
共 50 条
  • [21] Caffe CNN-based classification of hyperspectral images on GPU
    Garea, Alberto S.
    Heras, Dora B.
    Arguello, Francisco
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (03): : 1065 - 1077
  • [22] GPU accelerated waterpixel algorithm for superpixel segmentation of hyperspectral images
    Quesada-Barriuso, Pablo
    Heras, Dora Blanco
    Arguello, Francisco
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (09): : 10040 - 10052
  • [23] GPU accelerated waterpixel algorithm for superpixel segmentation of hyperspectral images
    Pablo Quesada-Barriuso
    Dora Blanco Heras
    Francisco Argüello
    The Journal of Supercomputing, 2021, 77 : 10040 - 10052
  • [24] Caffe CNN-based classification of hyperspectral images on GPU
    Alberto S. Garea
    Dora B. Heras
    Francisco Argüello
    The Journal of Supercomputing, 2019, 75 : 1065 - 1077
  • [25] GPU Projection of ECAS-II Segmenter for Hyperspectral Images Based on Cellular Automata
    Lopez-Fandino, Javier
    Priego, Blanca
    Heras, Dora B.
    Arguello, Francisco
    Duro, Richard J.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (01) : 20 - 28
  • [26] An adaptive parcel-based technique robust to registration noise for change detection in multitemporal VHR images
    Bovolo, Francesca
    Bruzzone, Lorenzo
    Marchesi, Silvia
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XIII, 2007, 6748
  • [27] Unsupervised Change Detection in Multitemporal VHR Images Based on Deep Kernel PCA Convolutional Mapping Network
    Wu, Chen
    Chen, Hongruixuan
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 12084 - 12098
  • [28] Change Detection for Hyperspectral Images Via Convolutional Sparse Analysis and Temporal Spectral Unmixing
    Guo, Qingle
    Zhang, Junping
    Zhong, Chongxiao
    Zhang, Ye
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4417 - 4426
  • [29] Adaptive Center-Focused Hybrid Attention Network for Change Detection in Hyperspectral Images
    Jiang, Fenlong
    Zhang, Shining
    Zhang, Mingyang
    Gong, Maoguo
    Zhou, Yu
    Zhao, Wei
    Guan, Ziyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [30] A MULTITEMPORAL CHANGE DETECTION SOLUTION TO OIL SPILL MONITORING
    Liu, Sicong
    Chi, Mingmin
    Zou, Yangxiu
    Samat, Alim
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7718 - 7721