Numerical Simulation of Bed Load and Suspended Load Sediment Transport Using Well-Balanced Numerical Schemes

被引:0
作者
J. C. González-Aguirre
J. A. González-Vázquez
J. Alavez-Ramírez
R. Silva
M. E. Vázquez-Cendón
机构
[1] Universidad Juárez Autónoma de Tabasco,División Acádemica de Ciencias Básicas
[2] Universidad Autónoma Metropolitana-Unidad Iztapalapa,Instituto de Ingeniería
[3] Universidad Nacional Autónoma de México,Departamento de Matemática Aplicada
[4] Universidade de Santiago de Compostela,undefined
来源
Communications on Applied Mathematics and Computation | 2023年 / 5卷
关键词
Sediment transport; Suspended load; Bed load; Finite volume method; Numerical simulation; Well-balanced schemes; 76-10;
D O I
暂无
中图分类号
学科分类号
摘要
Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed conservation equation. The complete system of equations is made up of the energy balance law and the Exner equations. The numerical solution for this complete system is done in a segregated manner. First, the hyperbolic part of the system of balance laws is solved using a finite volume scheme. Three ways to compute the numerical flux have been considered, the Q-scheme of van Leer, the HLLCS approximate Riemann solver, and the last one takes into account the presence of non-conservative products in the model. The discretisation of the source terms is carried out according to the numerical flux chosen. In the second stage, the bed conservation equation is solved by using the approximation computed for the system of balance laws. The numerical schemes have been validated making comparisons between the obtained numerical results and the experimental data for some physical experiments. The numerical results show a good agreement with the experimental data.
引用
收藏
页码:885 / 922
页数:37
相关论文
共 85 条
  • [1] Apsley DD(2008)Bed-load sediment transport on large slopes: model formulation and implementation within a RANS solver J. Hydraul. Eng. 134 1440-1451
  • [2] Stansby PK(2020)An exact source-term balancing scheme on the finite element solution of shallow water equations Comput. Methods Appl. Mech. Eng. 359 112662-4861
  • [3] Behzadi F(2012)A flux-limiter method for dam-break flows over erodible sediment beds Appl. Math. Model. 36 4847-148
  • [4] Newman JC(2016)Numerical solution of non-isothermal non-adiabatic flow of real gases in pipelines J. Comput. Phys. 323 126-1071
  • [5] Benkhaldoun F(1994)Upwind methods for hyperbolic conservation laws with source term Comput. Fluids 23 1049-1082
  • [6] Sari S(2004)Zero mass error using unsteady wetting-drying conditions in shallow water flows over dry irregular topography Int. J. Numer. Methods Fluids 45 1047-703
  • [7] Seaid M(2016)Nonhydrostatic dam break flows. II: one-dimensional depth-averaged modeling for movable bed flows J. Hydraul. Eng. 142 04016069-187
  • [8] Bermúdez A(2004)Computational dam-break hydraulics over erodible sediment bed J. Hydraul. Eng. 130 689-316
  • [9] López X(1998)Formation a jump by the dam-break wave over a granular bed J. Fluid Mech. 372 165-32
  • [10] Vázquez-Cendón ME(2008)Sediment transport models in shallow water equations and numerical approach by high order finite volume methods Comput. Fluids 37 299-989