Unified Approach to Starlike and Convex Functions Involving Convolution Between Analytic Functions

被引:0
|
作者
Syed Zakar Hussain Bukhari
Janusz Sokol
Sidra Zafar
机构
[1] Mirpur University of Science and Technology (MUST),Department of Mathematics
[2] Rzeszow University of Technology,Department of Mathematics
来源
Results in Mathematics | 2018年 / 73卷
关键词
Carathéodory functions; convolution; subordination; subordinating factor sequence; Primary 30C45; Secondary 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
Using the idea of convolution between analytic functions, we define a class UM(g,γ,b,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {UM}(g,\gamma ,b,k)$$\end{document} of analytic functions comprising of starlike and convex functions. These functions map the open unit disc on to the conic domains. We derive some sufficient conditions and then use them to define the class UM∗(g,γ,b,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {UM}^{*}(g,\gamma ,b,k)$$\end{document}. Making use of an increasing factor sequence, we discuss a subordination result. We may relate our findings with the previously known results.
引用
收藏
相关论文
共 50 条
  • [41] Applications of fractional calculus to parabolic starlike and uniformly convex functions
    Srivastava, HM
    Mishra, AK
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (3-4) : 57 - 69
  • [42] Radius Estimates and Convolution Properties for Analytic Functions
    Virendra Kumar
    Nak Eun Cho
    Oh Sang Kwon
    Young Jae Sim
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 1627 - 1640
  • [43] Starlike and close-to-convex functions defined by differential inequalities
    Obradovic, M.
    Ponnusamy, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (07) : 2642 - 2648
  • [44] Unified Solution of Some Properties Related to λ-Pseudo Starlike Functions
    Ibrahim, Musthafa
    Karthikeyan, K. R.
    CONTEMPORARY MATHEMATICS, 2023, 4 (04): : 926 - 936
  • [45] Subordination Theorem of Analytic Functions Defined by Convolution
    M. K. Aouf
    A. Shamandy
    A. O. Mostafa
    E. A. Adwan
    Complex Analysis and Operator Theory, 2013, 7 : 1117 - 1126
  • [46] Radius Estimates and Convolution Properties for Analytic Functions
    Kumar, Virendra
    Cho, Nak Eun
    Kwon, Oh Sang
    Sim, Young Jae
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (06) : 1627 - 1640
  • [47] Subordination Theorem of Analytic Functions Defined by Convolution
    Aouf, M. K.
    Shamandy, A.
    Mostafa, A. O.
    Adwan, E. A.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (04) : 1117 - 1126
  • [48] Convolution Properties for Certain Subclass of Analytic Functions
    Mohamed, Norlyda
    Mohamad, Daud
    Soh, Shaharuddin Cik
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 852 - 855
  • [49] Convolution properties of some classes of analytic functions
    Ponnusamy S.
    Singh V.
    Journal of Mathematical Sciences, 1998, 89 (1) : 1008 - 1020
  • [50] On certain multivalent analytic functions starlike with respect to k-symmetric points
    Xu, Yi-Hui
    Liu, Jin-Lin
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (05): : 1156 - 1171