Unified Approach to Starlike and Convex Functions Involving Convolution Between Analytic Functions

被引:0
|
作者
Syed Zakar Hussain Bukhari
Janusz Sokol
Sidra Zafar
机构
[1] Mirpur University of Science and Technology (MUST),Department of Mathematics
[2] Rzeszow University of Technology,Department of Mathematics
来源
Results in Mathematics | 2018年 / 73卷
关键词
Carathéodory functions; convolution; subordination; subordinating factor sequence; Primary 30C45; Secondary 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
Using the idea of convolution between analytic functions, we define a class UM(g,γ,b,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {UM}(g,\gamma ,b,k)$$\end{document} of analytic functions comprising of starlike and convex functions. These functions map the open unit disc on to the conic domains. We derive some sufficient conditions and then use them to define the class UM∗(g,γ,b,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {UM}^{*}(g,\gamma ,b,k)$$\end{document}. Making use of an increasing factor sequence, we discuss a subordination result. We may relate our findings with the previously known results.
引用
收藏
相关论文
共 50 条
  • [31] Properties of certain transforms defined by convolution of analytic functions
    Liu, Ming-Sheng
    Owa, Shigeyoshi
    Song, Nian-Sheng
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4702 - 4709
  • [32] New subclasses of analytic functions defined by convolution involving the hypergeometric function and the Owa-Srivastava operator
    Noor, Khalida Inayat
    Murtaza, Rashid
    Sokol, Janusz
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 449 - 458
  • [33] Some Properties for Certain Subclasses of Starlike Functions Defined by Convolution
    EL-Ashwah, R. M.
    Abdulkarem, F. M.
    Aouf, M. K.
    KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (01): : 147 - 159
  • [34] Classes of analytic functions subordinate to convex functions and extreme points
    Hallenbeck, DJ
    Hallenbeck, KT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 282 (02) : 792 - 800
  • [35] On a Class of Analytic Functions Related to Close-to-Convex Functions
    Murugusundaramoorthy, G.
    Reddy, K. Amarender
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (01) : 199 - 212
  • [36] On logarithmic coefficients for classes of analytic functions associated with convex functions
    Allu, Vasudevarao
    Sharma, Navneet Lal
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 191
  • [37] CLASSES OF ANALYTIC FUNCTIONS RELATED TO A COMBINATION OF TWO CONVEX FUNCTIONS
    Dziok, J.
    Noor, K. I.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (02): : 413 - 427
  • [38] CONVOLUTION TECHNIQUE FOR λ-CLOSE-TO-CONVEX FUNCTIONS
    Noor, Khalida Inayat
    Noor, Muhammad Aslam
    Awan, Muhammad Uzair
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 14 (02): : 178 - 184
  • [39] Coefficient estimates for starlike and convex functions associated with cosine function
    Marimuthu, Krishnan
    Uma, Jayaraman
    Bulboaca, Teodor
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (03): : 596 - 618
  • [40] LOGARITHMIC COEFFICIENTS PROBLEMS IN FAMILIES RELATED TO STARLIKE AND CONVEX FUNCTIONS
    Ponnusamy, Saminathan
    Sharma, Navneet Lal
    Wirths, Karl-Joachim
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 109 (02) : 230 - 249