Unified Approach to Starlike and Convex Functions Involving Convolution Between Analytic Functions

被引:0
|
作者
Syed Zakar Hussain Bukhari
Janusz Sokol
Sidra Zafar
机构
[1] Mirpur University of Science and Technology (MUST),Department of Mathematics
[2] Rzeszow University of Technology,Department of Mathematics
来源
Results in Mathematics | 2018年 / 73卷
关键词
Carathéodory functions; convolution; subordination; subordinating factor sequence; Primary 30C45; Secondary 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
Using the idea of convolution between analytic functions, we define a class UM(g,γ,b,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {UM}(g,\gamma ,b,k)$$\end{document} of analytic functions comprising of starlike and convex functions. These functions map the open unit disc on to the conic domains. We derive some sufficient conditions and then use them to define the class UM∗(g,γ,b,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {UM}^{*}(g,\gamma ,b,k)$$\end{document}. Making use of an increasing factor sequence, we discuss a subordination result. We may relate our findings with the previously known results.
引用
收藏
相关论文
共 50 条